
Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Scalable shared-memory multiprocessors distribute mem-
ory among the processors and use scalable interconnec-
tion networks to provide high bandwidth and low latency
communication. In addition, memory accesses are cached,
buffered, and pipelined to bridge the gap between the
slow shared memory and the fast processors. Unless care-
fully controlled, such architectural optimizations can cause
memory accesses to be executed in an order different from
what the programmer expects. The set of allowable mem-
ory access orderings forms the memory consistency model
or event ordering model for an architecture.

This paper introduces a new model of memory con-
sistency, calledrelease consistency, that allows for more
buffering and pipelining than previously proposed models.
A framework for classifying shared accesses and reasoning
about event ordering is developed. The release consistency
model is shown to be equivalent to the sequential consis-
tency model for parallel programs with sufficient synchro-
nization. Possible performance gains from the less strict
constraints of the release consistency model are explored.
Finally, practical implementation issues are discussed, con-
centrating on issues relevant to scalable architectures.

1 Introduction

Serial computers present a simple and intuitive model of
the memory system to the programmer. A load operation
returns the last value written to a given memory location.
Likewise, a store operation binds the value that will be
returned by subsequent loads until the next store to the
same location. This simple model lends itself to efficient
implementations—current uniprocessors use caches, write
buffers, interleaved main memory, and exploit pipelining
techniques. The accesses may even be issued and com-
pleted out of order as long as the hardware and compiler
ensure that data and control dependences are respected.

For multiprocessors, however, neither the memory sys-
tem model nor the implementation is as straightforward.
The memory system model is more complex because the
definitions of “last value written”, “subsequent loads”, and

“next store” become unclear when there are multiple pro-
cessors reading and writing a location. Furthermore, the
order in which shared memory operations are done by one
process may be used by other processes to achieve implicit
synchronization. For example, a process may set a flag
variable to indicate that a data structure it was manipulat-
ing earlier is now in a consistent state. Consistency models
place specific requirements on the order that shared mem-
ory accesses (events) from one process may be observed
by other processes in the machine. More generally, the
consistency model specifies what event orderings are le-
gal when several processes are accessing a common set of
locations.

Several memory consistency models have been proposed
in the literature: examples include sequential consistency
[7], processor consistency [5], and weak consistency [4].
The sequential consistencymodel [7] requires the execu-
tion of a parallel program to appear as some interleaving
of the execution of the parallel processes on a sequen-
tial machine. While conceptually simple, the sequential
consistency model imposes severe restrictions on the out-
standing accesses that a process may have and effectively
prohibits many hardware optimizations that could increase
performance. Other models attempt to relax the constraints
on the allowable event orderings, while still providing a
reasonable programming model for the programmer.

Architectural optimizations that reduce memory latency
are especially important for scalable multiprocessor archi-
tectures. As a result of the distributed memory and gen-
eral interconnection networks used by such multiproces-
sors [8, 9, 12], requests issued by a processor to distinct
memory modules may execute out of order. Caching of
data further complicates the ordering of accesses by intro-
ducing multiple copies of the same location. While mem-
ory accesses are atomic in systems with a single copy of
data (a new data value becomes visible to all processors
at the same time), such atomicity may not be present in
cache-based systems. The lack of atomicity introduces ex-
tra complexity in implementing consistency models. A
system architect must balance the design by providing a
memory consistency model that allows for high perfor-
mance implementations and is acceptable to the program-

1



mer.
In this paper, we present a new consistency model called

release consistency, which extends the weak consistency
model [4] by utilizing additional information about shared
accesses. Section 2 presents a brief overview of previously
proposed consistency models. The motivation and frame-
work for release consistency is presented in Section 3. Sec-
tion 4 considers equivalences among the several models
given proper information about shared accesses. Section 5
discusses potential performance gains for the models with
relaxed constraints. Finally, Section 6 discusses imple-
mentation issues, focusing on issues relevant to scalable
architectures.

2 Previously Proposed Memory Con-
sistency Models

In this section, we present event ordering requirements for
supporting the sequential, processor, and weak consistency
models. Although the models discussed in this section
have already been presented in the literature, we discuss
them here for purposes of completeness, uniformity in ter-
minology, and later comparison. Readers familiar with the
first three models and the event ordering terminology may
wish to skip to Section 3.

To facilitate the description of different event orderings,
we present formal definitions for the stages that a memory
request goes through. The following two definitions are
from Duboiset al. [4, 10]. In the following,P

i

refers to
processori.

Definition 2.1: Performing a Memory Request
A load by P

i

is consideredperformed with respect
to P

k

at a point in time when the issuing of astore
to the same address byP

k

cannot affect the value re-
turned by theload. A store by P

i

is considered
performed with respect toP

k

at a point in time when
an issuedload to the same address byP

k

returns the
value defined by thisstore (or a subsequentstore
to the same location). An access isperformedwhen it
is performed with respect to all processors.

Definition 2.2 describes the notion ofglobally performed
for loads.

Definition 2.2: Performing a load Globally
A load is globally performedif it is performedand
if the store that is the source of the returned value
has been performed.

The distinction between performed and globally per-
formedload accesses is only present in architectures with
non-atomicstores. A store is atomic if the value stored
becomes readable to all processors at the same time. In
architectures with caches and general interconnection net-
works, a store operation is inherently non-atomic un-
less special hardware mechanisms are employed to assure
atomicity.

From this point on, we implicitly assume that unipro-
cessor control and data dependences are respected. In ad-
dition, we assume that memory is kept coherent, that is,
all writes to the same location are serialized in some or-
der and are performed in that order with respect to any
processor. We have formulated the conditions for satisfy-
ing each model such that a process needs to keep track of
only requests initiated by itself. Thus, the compiler and
hardware can enforce ordering on a per process(or) basis.
We defineprogram orderas the order in which accesses
occur in an execution of the single process given that no
reordering takes place. When we use the phrase“all previ-
ous accesses”, we mean all accesses in the program order
that are before the current access. In presenting the event
ordering conditions to satisfy each model, we assume that
the implementation avoids deadlock by ensuring that ac-
cesses that occur previously in program order eventually
get performed (globally performed).

2.1 Sequential Consistency

Lamport [7] definessequential consistencyas follows.

Definition 2.3: Sequential Consistency
A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in
this sequence in the order specified by its program.

Scheurich and Dubois [10, 11] have described event or-
der restrictions that guarantee sequential consistency. Con-
dition 2.1 presents sufficient conditions for providing se-
quential consistency (these differ slightly from conditions
given in [10]).

Condition 2.1: Sufficient Conditions for Sequential
Consistency
(A) before aload is allowed to perform with respect
to any other processor, all previousload accesses
must beglobally performed and all previousstore
accesses must be performed, and
(B) before astore is allowed to perform with respect
to any other processor, all previousload accesses
must beglobally performed and all previousstore
accesses must be performed.

2.2 Processor Consistency

To relax some of the orderings imposed by sequential con-
sistency, Goodman introduces the concept ofprocessor
consistency[5]. Processor consistency requires that writes
issued from a processor may not be observed in any or-
der other than that in which they were issued. However,
the order in which writes from two processors occur, as
observed by themselves or a third processor, need not be
identical. Processor consistency is weaker than sequen-
tial consistency; therefore, it may not yield ‘correct’ exe-
cution if the programmer assumes sequential consistency.
However, Goodman claims that most applications give the

Page 2



same results under the processor and sequential consis-
tency models. Specifically, he relies on programmers to
use explicit synchronization rather than depending on the
memory system to guarantee strict event ordering. Good-
man also points out that many existing multiprocessors
(e.g., VAX 8800) satisfy processor consistency, but do not
satisfy sequential consistency.

The description given in [5] does not specify the or-
dering of read accesses completely. We have defined the
following conditions for processor consistency.

Condition 2.2: Conditions for Processor Consis-
tency
(A) before aload is allowed to perform with respect
to any other processor, all previousload accesses
must be performed, and
(B) before astore is allowed to perform with respect
to any other processor, all previous accesses (loads
andstores ) must be performed.

The above conditions allow reads following a write to
bypass the write. To avoid deadlock, the implementation
should guarantee that a write that appears previously in
program order will eventually perform.

2.3 Weak Consistency

A weaker consistency model can be derived by relating
memory request ordering to synchronization points in the
program. As an example, consider a processor updating
a data structure within a critical section. If the compu-
tation requires severalstore accesses and the system is
sequentially consistent, then eachstore will have to be
delayed until the previousstore is complete. But such
delays are unnecessary because the programmer has al-
ready made sure that no other process can rely on that
data structure being consistent until the critical section is
exited. Given that all synchronization points are identi-
fied, we need only ensure that the memory is consistent
at those points. This scheme has the advantage of provid-
ing the user with a reasonable programming model, while
permitting multiple memory accesses to be pipelined. The
disadvantage is that all synchronization accesses must be
identified by the programmer or compiler.

The weak consistencymodel proposed by Duboiset
al. [4] is based on the above idea. They distinguish be-
tween ordinary shared accesses and synchronization ac-
cesses, where the latter are used to control concurrency
between several processes and to maintain the integrity
of ordinary shared data. The conditions to ensure weak
consistency are given below (slightly different from the
conditions given in [4]).

Condition 2.3: Conditions for Weak Consistency
(A) before an ordinaryload or store access is al-
lowed to perform with respect to any other proces-
sor, all previoussynchronizationaccesses must be per-
formed, and
(B) before asynchronizationaccess is allowed to per-
form with respect to any other processor, all previ-
ous ordinaryload andstore accesses must be per-
formed, and
(C) synchronizationaccesses are sequentially consis-
tent with respect to one another.

3 The Release Consistency Model

This section presents the framework for release consis-
tency. There are two main issues explored in this section—
performance and correctness. For performance, the goal is
to exploit additional information about shared accesses to
develop a memory consistency model that allows for more
efficient implementations. Section 3.1 discusses a catego-
rization of shared accesses that provides such information.
For correctness, the goal is to develop weaker models that
are equivalent to the stricter models as far as the results of
programs are concerned. Section 3.2 introduces the notion
of properly-labeled programs that is later used to prove
equivalences among models. Finally, Section 3.3 presents
the release consistency model and discusses how it exploits
the extra information about accesses.

3.1 Categorization of Shared Memory Ac-
cesses

We first describe the notions ofconflicting accesses(as
presented in [13]) andcompeting accesses. Two accesses
are conflicting if they are to the same memory location and
at least one of the accesses is astore.1 Consider a pair
of conflicting accessesa1 and a2 on different processors.
If the two accesses are not ordered, they may execute si-
multaneously thus causing a race condition. Such accesses
a1 anda2 form a competing pair. If an access is involved
in a competing pair under any execution, then the access
is considered acompeting access.

A parallel program consisting of individual processes
specifies the actions for each process and the interac-
tions among processes. These interactions are coordinated
through accesses to shared memory. For example, a pro-
ducer process may set a flag variable to indicate to the
consumer process that a data record is ready. Similarly,
processes may enclose all updates to a shared data struc-
ture within lock and unlock operations to prevent simulta-
neous access. All such accesses used to enforce an order-
ing among processes are calledsynchronization accesses.
Synchronization accesses have two distinctive character-
istics: (i) they are competing accesses, with one pro-
cess writing a variable and the other reading it; and (ii)
they are frequently used to order conflicting accesses (i.e.,

1A read-modify-write operation can be treated as an atomic access
consisting of both a load and a store.

Page 3



competing non-competing

non-synchronization

shared access

acquire release

synchronization

Figure 1: Categorization of shared writable accesses.

make them non-competing). For example, the lock and
unlock synchronization operations are used to order the
non-competing accesses made inside a critical section.

Synchronization accesses can further be partitioned into
acquireand releaseaccesses. An acquire synchronization
access (e.g., a lock operation or a process spinning for
a flag to be set) is performed to gain access to a set of
shared locations. A release synchronization access (e.g.,
an unlock operation or a process setting a flag) grants
this permission. An acquire is accomplished by reading
a shared location until an appropriate value is read. Thus,
an acquire is always associated with a read synchronization
access (atomic read-modify-write accesses are discussed in
Section 3.2). Similarly, a release is always associated with
a write synchronization access.

Not all competing accesses are used as synchroniza-
tion accesses, however. As an example, programs that
use chaotic relaxation algorithms make many competing
accesses to read their neighbors’ data. However, these ac-
cesses are not used to impose an ordering among the paral-
lel processes and are thus considerednon-synchronization
competing accesses in our terminology. Figure 1 shows
this categorization for memory accesses.

The categorization of shared accesses into the suggested
groups allows one to provide more efficient implementa-
tions by using this information to relax the event ordering
restrictions. For example, the purpose of a release access is
to inform other processes that accesses that appear before
it in program order have completed. On the other hand,
the purpose of an acquire access is to delay future access
to data until informed by another process. The categoriza-
tion described here can be extended to include other useful
information about accesses. The tradeoff is how easily that
extra information can be obtained from the compiler or the
programmer and what incremental performance benefits it
can provide.

Finally, the method for identifying an access as a com-
peting access depends on the consistency model. For ex-
ample, it is possible for an access to be competing under
processor consistency and non-competing under sequential
consistency. While identifying competing pairs is difficult
in general, the following conceptual method may be used
under sequential consistency. Two conflicting accessesb1
andb2 on different processes form a competing pair if there
exists at least one legal interleaving whereb1 and b2 are

sharedL

ordinaryLspecialL

syncL

L
acq Lrel

Lnsync

Figure 2: Labels for memory accesses.

adjacent.

3.2 Properly-Labeled Programs

The previous subsection described a categorization based
on the intrinsic properties of an access. We now describe
the labelings for an access. The label represents what is
asserted about the categorization of the access. It is the re-
sponsibility of the compiler or the programmer to provide
labels for the accesses. Figure 2 shows possible label-
ings for memory accesses in a program. The labels shown
correspond to the categorization of accesses depicted in
Figure 1. The subscriptL denotes that these are labels.
The labels at the same level are disjoint, and a label at a
leaf implies all its parent labels.

The release consistency model exploits the information
conveyed by the labels to provide less strict event order-
ing constraints. Thus, the labels need to have a proper
relationship to the actual category of an accesses to ensure
correctness under release consistency. For example, the
ordinary

L

label asserts that an access is non-competing.
Since the hardware may exploit theordinary

L

label to
use less strict event orderings, it is important that the
ordinary

L

label be used only for non-competing accesses.
However, a non-competing access can be conservatively la-
beled asspecial

L

. In addition, it is important thatenough
competing accesses be labeled asacq

L

and rel
L

to en-
sure that the accesses labeledordinary

L

are indeed non-
competing. The following definition provides a conceptual
model for determining whether enoughspecial

L

accesses
have been categorized assync

L

(again assuming the se-
quential consistency model).

Definition 3.1: Enough Sync

L

Labels
Pick any two accessesu on processorP

u

and v on
processorP

v

(P
u

not the same asP
v

) such that the
two accesses conflict, and at least one is labeled as
ordinary

L

. Under any legal interleaving, ifv appears
after (before)u, then there needs to be at least one
sync

L

write (read) access onP
u

and onesync
L

read
(write) onP

v

separatingu andv, such that the write
appears before the read. There areenoughaccesses
labeled assync

L

if the above condition holds for all
possible pairsu andv. A sync

L

read has to be labeled
asacq

L

and async
L

write has to be labeled asrel
L

.

Page 4



To determine whether all labels are appropriate, we
present the notion of properly-labeled programs.

Definition 3.2: Properly-Labeled (PL) Programs
A program isproperly-labeled (PL)if the following
hold: (shared access) � shared

L

, competing �

special

L

, andenough(as defined above)special
L

ac-
cesses are labeled asacq

L

andrel
L

.

An acq

L

or rel
L

label implies thesync
L

label. Any
special

L

access that is not labeled assync
L

is labeled
as nsync

L

. In addition, anyshared
L

access that is not
labeled asspecial

L

is labeled asordinary
L

. Note that
this categorization is based on access and not on location.
For example, it is possible that of two accesses to the same
location, one is labeledspecial

L

while the other is labeled
ordinary

L

.
Most architectures provide atomic read-modify-write op-

erations for efficiently dealing with competing accesses.
The load and store access in the operation can be labeled
separately based on their categorization, similarly to indi-
vidual load and store accesses. The most common label
for a read-modify-write is anacq

L

for the load and an
nsync

L

for the store. A prevalent example of this is an
atomic test-and-set operation used to gain exclusive access
to a set of data. Although the store access is necessary to
ensure mutual exclusion, it does not function as either an
acquire or a release. If the programmer or compiler cannot
categorize the read-modify-write appropriately, the conser-
vative label for guaranteeing correctness isacq

L

andrel
L

for the load and store respectively (the operation is treated
as both an acquire and a release).

There is no unique labeling to make a program a PL pro-
gram. As long as the above subset properties are respected,
the program will be considered properly-labeled. Proper
labeling is not an inherent property of the program, but
simply a property of the labels. Therefore, any program
can be properly labeled. However, the less conservative
the labeling, the higher is the potential for performance
benefits.

Given perfect information about the category of an ac-
cess, the access can be easily labeled to provide a PL pro-
gram. However, perfect information may not be available
at all times. Proper labeling can still be provided by be-
ing conservative. This is illustrated in the three possible
labeling strategies enumerated below (from conservative
to aggressive). Only leaf labels shown in Figure 2 are
discussed (remember that a leaf label implies all parent
labels).

1. If competing and non-competing accesses can not be
distinguished, then all reads can be labeled asacq

L

and all writes can be labeled asrel
L

.

2. If competing accesses can be distinguished from non-
competing accesses, but synchronization and non-
synchronization accesses can not be distinguished,
then all accesses distinguished as non-competing can
be labeled asordinary

L

and all competing accesses
are labeled asacq

L

andrel
L

(as before).

3. If competing and non-competing accesses are distin-
guished and synchronization and non-synchronization
accesses are distinguished, then all non-competing
accesses can be labeled asordinary

L

, all non-
synchronization accesses can be labeled asnsync

L

,
and all synchronization accesses are labeled asacq

L

andrel
L

(as before).

We discuss two practical ways for labeling accesses to
provide PL programs. The first involves parallelizing com-
pilers that generate parallel code from sequential programs.
Since the compiler does the parallelization, the information
about which accesses are competing and which accesses
are used for synchronization is known to the compiler and
can be used to label the accesses properly.

The second way of producing PL programs is to use a
programming methodology that lends itself to proper la-
beling. For example, a large class of programs are writ-
ten such that accesses to shared data are protected within
critical sections. Such programs are calledsynchronized
programs, whereby writes to shared locations are done in
a mutually exclusive manner (no other reads or writes can
occur simultaneously). In a synchronized program, all ac-
cesses (except accesses that are part of the synchroniza-
tion constructs) can be labeled asordinary

L

. In addi-
tion, since synchronization constructs are predefined, the
accesses within them can be labeled properly when the
constructs are first implemented. For this labeling to be
proper, the programmer must ensure that the program is
synchronized.

Given a program is properly-labeled, the remaining is-
sue is whether the consistency model exploits the extra
information conveyed by the labels. The sequential and
processor consistency models ignore all labels aside from
shared

L

. The weak consistency model ignores any label-
ings pastordinary

L

andspecial
L

. In weak consistency,
an access labeledspecial

L

is treated as a synchronization
access and as both an acquire and a release. In contrast,
the release consistency model presented in the next sub-
section exploits the information conveyed by the labels at
the leaves of the labeling tree.

From this point on, we do not distinguish between the
categorization and the labeling of an access, unless this
distinction is necessary.

3.3 Release Consistency

Release consistency is an extension of weak consistency
that exploits the information about acquire, release, and
non-synchronization accesses. The following gives the
conditions for ensuringrelease consistency.

Page 5



Condition 3.1: Conditions for Release Consistency
(A) before an ordinaryload or store access is al-
lowed to perform with respect to any other processor,
all previousacquireaccesses must be performed, and
(B) before areleaseaccess is allowed to perform with
respect to any other processor, all previous ordinary
load andstore accesses must be performed, and
(C) special accessesare processor consistent with re-
spect to one another.

Four of the ordering restrictions in weak consistency are
not present in release consistency. The first is that ordi-
naryload andstore accesses following a release access
do not have to be delayed for the release to complete; the
purpose of the release synchronization access is to signal
that previous accesses in a critical section are complete,
and it does not have anything to say about ordering of
accesses following it. Of course, the local dependences
within the same processor must still be respected. Second,
an acquire synchronization access need not be delayed for
previous ordinaryload and store accesses to be per-
formed. Since an acquire access is not giving permission
to any other process to read/write the previous pending lo-
cations, there is no reason for the acquire to wait for them
to complete. Third, a non-synchronization special access
does not wait for previous ordinary accesses and does not
delay future ordinary accesses; a non-synchronization ac-
cess does not interact with ordinary accesses. The fourth
difference arises from the ordering of special accesses. In
release consistency, they are only required to be processor
consistent and not sequentially consistent. For all applica-
tions that we have encountered, sequential consistency and
processor consistency (for special accesses) give the same
results. Section 4 outlines restrictions that allow us to show
this equivalence. We chose processor consistency since it
is easier to implement and offers higher performance.

4 Model Equivalences

The purpose of this section is to provide more insight
into the similarities and differences among the consistency
models presented in Sections 2 and 3 by showing relations
and equivalences among the models.

We have presented four consistency models: sequen-
tial consistency (SC), processor consistency (PC), weak
consistency with special accesses sequentially consistent
(WCsc), and release consistency with special accesses pro-
cessor consistent (RCpc). Two other models that fit within
this framework are weak consistency with special accesses
processor consistent (WCpc) and release consistency with
special accesses sequentially consistent (RCsc). Figure 3
depicts the event orderings imposed by Conditions 2.1
through 2.3 for SC, PC, WCsc, and Condition 3.1 for
RCpc. The WC and RC models have fewer restrictions
on ordering than SC and PC, and RC has fewer restric-
tions than WC. Of course, a hardware implementation has
the choice of enforcing the stated conditions directly or im-
posing some alternative set of conditions that guarantee the

u

v

v cannot perform with respect to
any other processor until u is
performed

u

v

v cannot perform with respect to
any other processor until u is
globally performed

LOAD/STORE

LOAD/STORE

LOADs and STOREs can
perform in any order as long
as local data and control
dependences are observed

LOAD

LOAD

STORE

STORE

LOAD

Sequential
Consistency

STORE

LOAD

LOAD

STORE

STORE

LOAD

Processor
Consistency

STORE

ACQUIRE

RELEASE

LOAD/STORE

LOAD/STORE

ACQUIRE

RELEASE

ACQUIRE

RELEASE

ACQUIRE

LOAD/STORE

LOAD/STORE

RELEASE

Ordering between
Special Accesses

Ordering among Ordinary
and Special Accesses

Weak Consistency (WCsc)

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

ACQUIRE

LOAD/STORE

LOAD/STORE

RELEASE

LOAD/STORE

LOAD/STORE

RELEASE

ACQUIRE

RELEASE

ACQUIRE

RELEASE

Ordering among Ordinary
and Special Accesses

Ordering between
Special Accesses

Release Consistency (RCpc)

ACQUIRE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

NSYNC STORE NSYNC STORE NSYNC STORE NSYNC STORE

Figure 3: Ordering requirements for different consistency
models.

executions of programs appear as if the stated conditions
were followed.

We define the relations� (stricter) and= (equal) for
relating the models. IfA andB are different consistency
models, then relationA � B says that results of execu-
tions of a program under model A will be in accordance
to legal results for the program under model B, but not
necessarily vice versa. The stricter relation is transitive.
The relationA = B says that for a certain program, mod-
els A and B cannot be distinguished based on the results
of the program. GivenA � B andB � A, we know
A = B. Some obvious relations that hold for any parallel
program are:SC � PC, SC � WCsc � RCsc, SC �

WCpc � RCpc, PC � RCpc, WCsc � WCpc, and
RCsc � RCpc. However, the stricter relation does not
hold among the following pairs: (PC,WCsc), (PC,RCsc),
(PC,WCpc), and (RCsc,WCpc).

Due to the more complex semantics of the weaker mod-
els, it is desirable to show that the weaker models are
equivalent to the stricter models for certain classes of pro-
grams. Such equivalences would be useful. For example,
a programmer can write programs under the well defined
semantics of the sequential consistency model, and as long
as the program satisfies the restrictions, it can safely be ex-

Page 6



ecuted under the more efficient release consistency model.
Let us first restrict the programs to PL programs under

sequential consistency. Given such programs, we have
proved the following equivalences:SC = WCsc =

RCsc. This is done by provingRCsc � SC for PL pro-
grams and using the relationSC � WCsc � RCsc. Our
proof technique is based on an extension of the formal-
ism presented by Shasha and Snir [13]. We have included
the proof forRCsc � SC in the appendix. A similar
proof can be used to showPC = WCpc = RCpc for PL
programs under the processor consistency model.

More equivalences can be shown if we restrict pro-
grams to those that cannot distinguish between sequen-
tial consistency and processor consistency (SC = PC).
Given a set of restrictions on competingload accesses,
it can be shown thatSC = PC.2 The restrictions are
general enough to allow for all implementations of locks,
semaphores, barriers, distributed loops, and task queues
that we are interested in. Given competingload ac-
cesses have been restricted (therefore,SC = PC) and
shared accesses are properly labeled to qualify the pro-
gram as a PL program under SC, it is easily shown that
SC = PC = WCsc = RCsc = WCpc = RCpc. There-
fore, such a program could be written based on the sequen-
tial consistency model and will run correctly under release
consistency (RCpc).

The above equivalences hold for PL programs only. In
some programs most accesses are competing (e.g., chaotic
relaxation) and must be labeled as special for proper la-
beling. While this will make the equivalences hold, the
program’s performance may not be substantially better on
RCsc than on SC. However, such applications are usually
robust enough to tolerate a more relaxed ordering on com-
peting accesses. For achieving higher performance in these
cases, the programmer needs to directly deal with the more
complex semantics of release consistency to reason about
the program.

5 Performance Potentials for Differ-
ent Models

The main purpose of examining weaker models is perfor-
mance. In this section, we explore the potential gains in
performance for each of the models. Realizing the full po-
tential of a model will generally depend on the access be-
havior of the program and may require novel architectural
and compiler techniques. Our goal is to provide intuition
about how one model is more efficient than another.

The performance differences among the consistency
models arise from the opportunity to overlap large latency
memory accesses with independent computation and possi-
bly other memory accesses. When the latency of an access

2Given such restrictions, one can allow an atomic test-and-set used as
an acquire to perform before a previous special write access (e.g., unset)
has been performed. We are currently preparing a technical report that
describes the details.

is hidden by overlapping it with other computation, it is
known as accessbuffering. When the latency of an access
is hidden by overlapping with other accesses, it is known as
accesspipelining. To do buffering and pipelining for read
accesses requires prefetch capability (non-blocking loads).

We provide simple bounds for the maximum perfor-
mance gain of each model compared to a base execu-
tion model. The base model assumes that the processor
is stalled on every access that results in a cache miss. It
is easily shown that sequential consistency and processor
consistency can at best gain a factor of 2 and 3, respec-
tively, over the base model. This gain arises from the op-
portunity to buffer accesses. In practice though these two
models are not expected to perform much better than the
base model, since access buffering is not effective when
the frequency of shared accesses is high.

The weak and release consistency models can poten-
tially provide large gains over the base model, since ac-
cesses and computation in the region between two adjacent
synchronization points can be overlapped freely as long as
uniprocessor dependences are respected. In this case, the
maximum gain over the base model is approximately equal
to t

lat

=t

ser

, where t
lat

is the latency of a miss andt
ser

is the shortest delay between the issue of two consecutive
accesses that miss in a cache. Intuitively, this is because
ordinary accesses within a region can be pipelined. Unlike
the maximum gains for SC and PC, the potential gains for
WC and RC are more realizable. For example, several nu-
merical applications fetch and update large arrays as part
of their computations. The pipelining of reads and writes
in such applications can lead to large performance gains.

The difference in performance between WC and RC
arises when the occurrence of special accesses is more
frequent. While weak consistency requires ordinary ac-
cesses to perform in the region between two synchroniza-
tion points, release consistency relaxes this by allowing
an ordinary access to occur anywhere between the previ-
ous acquire and the next release. In addition, an acquire
can perform without waiting for previous ordinary accesses
and ordinary accesses can perform without waiting for a
release. Figure 4 shows an example that highlights the
difference between the two models (assume that there are
no local dependences).

To illustrate the performance gains made possible by
the release consistency model, we consider the example of
doing updates to a distributed hash table. Each bucket in
the table is protected by a lock. A processor acquires the
lock for a bucket first. Next, several words are read from
records in that bucket, some computation is performed,
and several words are written based on the result of the
computation. Finally, the lock is released. The processor
then moves on to do the same sequence of operations on
another bucket. Such operations are common in several
applications (for example, token hash tables in OPS5 [6]).
The locality of data in such an application is low since the
hash table can be large and several other processors may
have modified an entry from the last time it was accessed.
Therefore, the read and write accesses will miss often.

Page 7



ACQUIRE

ACQUIRE

RELEASE

RELEASE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

Weak Consistency (WCsc)

2

1

1

1

2

3

2

ACQUIRE

LOAD/STORE

LOAD/STORE

RELEASE

LOAD/STORE

LOAD/STORE

RELEASE

ACQUIRE

LOAD/STORE

LOAD/STORE

Release Consistency (RCpc)

1

21

1

2

2

3

u

v

v cannot perform with respect to
any other processor until u is
performed

Figure 4: Possible overlap difference between WCsc and
RCpc.

Under sequential consistency, all accesses and computa-
tion become serialized. With weak consistency, the reads
can be pipelined. Of course, this assumes the architec-
ture allows multiple outstanding reads. All reads need to
complete before the computation. Once the computation
completes, the writes occur in a pipelined fashion. How-
ever, before releasing the lock, all writes need to complete.
The lock for the next record can not be acquired until the
previous lock is released.

Release consistency provides the most opportunity for
overlap. Within a critical section, the overlap is the same
as in weak consistency. However, while the release is
being delayed for the writes to complete, the processor is
free to move on to the next record to acquire the lock and
start the reads. Thus, there is overlap between the writes
of one critical section and the reads of the next section.

To make the example more concrete, assume the latency
of a miss is 40 cycles. Consider read miss, write miss, ac-
quiring a lock, and releasing a lock as misses. Assume
t

ser

is 10 cycles and the computation time is 100 cycles.
Assume three read misses and three write misses in each
record lookup and update. If all accesses are serialized,
each critical section takes 420 cycles. With weak con-
sistency, the read misses before the computation and the
write misses after the computation can be pipelined. The
three read misses will complete in 60 cycles. The same
is true for the write misses. Therefore, the critical section
completes in 300 cycles on an implementation with weak
consistency. Under release consistency, the same overlap
is possible within a critical section. In addition, there is
overlap between critical sections. Therefore, the processor
can move on to the next critical section every 230 cycles.
Figure 5 shows the overlap differences among sequential,
weak, and release consistency. The segments shown span
the time from the issue to the completion of an access.
An access may be initiated by the processor several cycles
before it is issued to the memory system.

ACQ COMPUTE RELREADS WRITES

Accesses Serialized

ACQ
READS WRITES

RELCOMPUTE

Weak Consistency

ACQ
READS WRITES

RELCOMPUTE

ACQ
READS WRITES

RELCOMPUTE

Release Consistency

Figure 5: Overlap in processing hash table buckets.

6 Implementation Issues

The two most important issues from an implementation
point of view are correctness and performance. The con-
sistency model determines what a correct implementation
of the memory system must provide. The challenge for a
correct implementation is to achieve the full performance
potential of the chosen consistency model. This section
presents practical implementation techniques, focusing on
issues relevant to scalable architectures that use caches,
distributed memory, and scalable interconnection networks.

In the following subsections, we outline the techniques
for ordering accesses under the various consistency mod-
els. The problem is split between ordering accesses to
the same memory block and those to different memory
blocks. General solutions to achieve the proper ordering
are given along with the particular solutions employed in
the DASH prototype system [8]. Our discussion focuses on
invalidation-based coherence protocols, although the con-
cepts can also be applied to update-based protocols.

6.1 Inter-Block Access Ordering and the
FENCE Mechanism

As a result of the distribution of the memory and the use
of scalable interconnection networks, requests issued by a
processor to distinct memory modules may execute out of
order. To maintain order among two accesses, we need a
mechanism to delay the issue of one access until the previ-
ous one has been performed.3 This requires each processor
to keep track of its outstanding accesses. Due to multiple
paths and variable delays within the memory system, ac-
knowledge messages from target memories and caches are
required to signal the completion of an access.

3There is a subtle difference between delaying issue and delaying an
access from being performed with respect to any other processor. Instead
of delaying the issue of a write, the processor can delay making the
new value visible to other processors. The write is considered performed
when the new value is made visible to other processors. This allows
write accesses to be pipelined. We are studying hardware techniques that
exploit this distinction for write accesses in invalidate-based machines.
However, we do not consider such techniques in this paper.

Page 8



Model Operation Preceded Fence Type Previous Accesses that
by Fence must be performed

LOAD STORE

SC LOAD full G P
STORE full G P

PC LOAD full P
STORE write P P

Figure 6: Fence operations to achieve sequential and pro-
cessor consistency. P denotes performed while G denotes
globally performed.

We refer to the mechanism for delaying the issue of ac-
cesses as afence [3, 5, 13]. We define a general set of
fence operations and demonstrate how these fence oper-
ations can be used to implement the consistency models
presented earlier. While fence operations are described
here as explicit operations, it is possible, and often desir-
able, to implicitly associate fences with load, store, and
special (e.g., acquire, release) accesses.

For generality, we assume that load operations are non-
blocking. The processor can proceed after the load is is-
sued, and is only delayed if the destination register of the
load is accessed before the value has returned. In contrast,
a blocking load stalls the processor until it is performed.

Fence operations can be classified by the operations they
delay and the operations they wait upon. Useful opera-
tions to delay are: (i) all future read and write accesses
(full fence); (ii) all future write accesses (write fence), and
(iii) only the access immediately following the fence (im-
mediate fence). Likewise, useful events to wait for are a
combination of previous load accesses, store accesses, and
(for the weaker models) special accesses.

Figure 6 shows the placement and type of fence oper-
ations required to achieve sequential and processor con-
sistency. For example, the first line for SC in the fig-
ure indicates that the fence prior to a load is a full fence
waiting for all previous loads to globally perform and all
previous stores to perform. Figure 7 shows the fence oper-
ations necessary to achieve weak consistency (WCsc) and
release consistency (RCpc). The implementations outlined
are the most aggressive implementation for each model in
that only the delays that are necessary are enforced. Con-
servative implementations are possible whereby hardware
complexity is reduced by allowing some extra delays.

To implement fences, a processor must keep track of
outstanding accesses by keeping appropriate counters. A
count is incremented upon the issue of the access, and is
decremented when the acknowledges come back for that
access (an acknowledge for a read access is simply the
return value). For full and write fences, the number of
counters necessary is a function of the number of differ-
ent kinds of accesses that need to be distinguished. For
example, RCpc needs to distinguish four groups of ac-
cesses: ordinary, nsync load, acquire, and special store ac-

cesses. Therefore, an aggressive implementation requires
four counters. However, only two counters are required if
special loads are blocking. For immediate fences, the same
number of counters (as for full or write fence) is required
for each outstanding immediate fence. Therefore, we have
to multiply this number by the number of immediate fences
that are allowed to be outstanding. Slightly conservative
implementations of release consistency may simply dis-
tinguish special load accesses from other accesses by us-
ing two counters (only one if special loads are blocking)
and limit the number of outstanding immediate fences to
a small number.

Full fences can be implemented by stalling the processor
until the appropriate counts are zero. A write fence can be
implemented by stalling the write buffer. The immediate
fence, which is only required in release consistency (for an
aggressive implementation), requires the most hardware.
Each delayed operation requires an entry with its own set
of counters. In addition, accesses and acknowledges need
to be tagged to distinguish which entry’s counters should
be decremented upon completion. In the DASH proto-
type (discussed in Section 6.3), a write fence is substituted
for the immediate fence (load accesses are blocking), thus
providing a conservative implementation of release consis-
tency.

6.2 Intra-Block Ordering of Accesses

The previous section discussed ordering constraints on ac-
cesses to different memory blocks. When caching is added
to a multiprocessor, ordering among accesses to the same
block becomes an issue also. For example, it is possible
to receive a read request to a memory block that has inval-
idations pending due to a previous write. There are subtle
issues involved with servicing the read request while in-
validations are pending. Cache blocks of larger than one
word further complicate ordering, since accesses to differ-
ent words in the block can cause a similar interaction.

In an invalidation-based coherence protocol, a store op-
eration to a non-dirty location requires obtaining exclu-
sive ownership and invalidating other cached copies of the
block. Such invalidations may reach different processors
at different times and acknowledge messages are needed
to indicate that the store is performed. In addition, own-
ership accesses to the same block must be serialized to
ensure only one value persists. Unfortunately, the above
two measures are not enough to guarantee correctness. It
is important to distinguish between dirty cache lines with
pending invalidates versus those with no pending invali-
dates. Otherwise, a processor cache may give up its own-
ership to a dirty line with invalidates pending to a read
or write request by another processor, and the requesting
processor would not be able to detect that the line returned
was not performed. The requesting processor could then
improperly pass through a fence operation that requires all
previous loads to be globally performed (if access was a
read) or all previous stores to be performed (if access was
a write). Consequently, read and ownership requests to a

Page 9



Model Operation Preceded Fence Type Previous Accesses that
by Fence must be Performed

LOAD STORE SPECIAL LD SPECIAL ST

WCsc first LOAD/STORE full P P
after SPECIAL
SPECIAL LD full P P G P
SPECIAL ST full P P G P

Model Operation Preceded Fence Type Previous Accesses that
by Fence must be Performed

LOAD STORE NSYNC LD ACQUIRE NSYNC ST RELEASE

RCpc first LOAD/STORE full P
after ACQUIRE

NSYNC LD immediate P P
ACQUIRE full P P
NSYNC ST immediate P P P P
RELEASE immediate P P P P P P

Figure 7: Fence operations to achieve weak consistency and release consistency. P denotes performed while G denotes
globally performed.

block with pending invalidates must either be delayed (by
forcing retry or delaying in a buffer) until the invalidations
are complete, or if the request is serviced, the requesting
processor must be notified of the outstanding status and ac-
knowledges should be forwarded to it to indicate the com-
pletion of the store. The first alternative provides atomic
store operations. The second alternative doesn’t guarantee
atomicity of the store, but informs the requesting processor
when the store has performed with respect to all proces-
sors. In the next subsection, we will discuss the specific
implementation technique used in DASH.

The issues in update-based cache coherence schemes are
slightly different. In an update-based scheme, a store op-
eration to a location requires updating other cache copies.
To maintain coherence, updates to the same block need
to be serialized at a central point and updates must reach
each cache in that order. In addition, SC-based models are
difficult to implement because copies of a location get up-
dated at different times (it is virtually impossible to provide
atomic stores). Consequently, a load may return a value
from a processor’s cache, with no indication of whether the
responsible store has performed with respect to all proces-
sors. For this reason, PC-based models are an attractive
alternative for update-based coherence schemes.

6.3 The DASH Prototype

The DASH multiprocessor [8], currently being built at
Stanford, implements many of the features discussed in
the previous sections. The architecture consists of several
processing nodes connected through a low-latency scalable
interconnection network. Physical memory is distributed
among the nodes. Each processing node, orcluster, is
a Silicon Graphics POWER Station 4D/240 [2] consist-
ing of four high-performance processors with their indi-
vidual caches and a portion of the shared memory. A

bus-based snoopy scheme keeps caches coherent within a
cluster while inter-cluster coherence is maintained using
a distributed directory-based protocol. For each memory
block, the directory keeps track of remote clusters caching
it, and point-to-point messages are sent to invalidate re-
mote copies of the block.

Each cluster contains a directory controller board. This
directory controller is responsible for maintaining cache
coherence across the clusters and serving as the interface to
the interconnection network. Of particular interest to this
paper are the protocol and hardware features that are aimed
at implementing the release consistency model. Further
details on the protocol are given in [8].

The processor boards of the 4D/240 are designed to
work only with the simple snoopy protocol of the bus.
The base, single-bus system implements a processor con-
sistency model. The single bus guarantees that operations
cannot be observed out of order, and no acknowledgements
are necessary. Read operations are blocking on the base
machine.

In the distributed DASH environment, the release con-
sistency model allows the processor to retire a write after it
has received ownership, but before the access is performed
with respect to all other processors. Therefore, a mecha-
nism is needed to keep track of outstanding accesses. In
DASH, this function is performed by the remote access
cache (RAC). Corresponding to each outstanding access,
the RAC maintains a count of invalidation acknowledges
pending for that cache block and keeps track of the proces-
sor(s) associated with that access. In addition, the RAC
maintains a counter per processor indicating the number
of RAC entries (i.e., outstanding requests) in use by each
processor.

To ensure proper intra-block ordering, the RAC detects
accesses to blocks with pending invalidates by snooping
on the cluster bus. In case of a local processor access, the

Page 10



RAC allows the operation to complete, but adds the new
processor to the processor tag field of the RAC. Thus, the
processor that has a copy of the line now shares respon-
sibility for the block becoming performed. For remote re-
quests (i.e., requests from processors on a different cluster)
the RAC rejects the request. The RAC does not attempt
to share a non-performed block with a remote processor
because of the overhead of maintaining the pointer to this
remote processor and the need to send an acknowledge-
ment to this processor when the block has been performed.
Rejecting the request is not as desirable as queuing the re-
quests locally, but this would require extra buffering.

To ensure proper inter-block ordering, DASH again re-
lies on the acknowledges in the protocol and the RAC. The
per processor counter indicates the number of outstanding
requests for each processor. When this count is zero, then
the processor has no outstanding operations and a fence
operation can complete. There are two types of fence op-
erations in DASH: a full fence and a write fence. The full
fence is implemented by stalling the processor until all
previous memory operations are performed (i.e., the RAC
count is zero for that processor). The less restrictive write
fence is implemented by stalling the output of the proces-
sor’s write-buffer until all previous memory operations are
performed. This effectively blocks the processor’s access
to the second level cache and cluster bus.

DASH distinguishes lock and unlock synchronization
operations by physical address. All synchronization vari-
ables must be partitioned to a separate area of the address
space. Each unlock (release) operation includes an implicit
write fence. This blocks the issuing of any further writes
(including the unlock operation) from that processor un-
til all previous writes have been performed. This implicit
write fence provides a sufficient implementation for release
consistency. The explicit forms of full and write fence op-
erations are also available. These allow the programmer
or compiler to synthesize other consistency models.

7 Concluding Remarks

The issue of what memory consistency model to implement
in hardware is of fundamental importance to the design of
scalable multiprocessors. In this paper, we have proposed a
new model of consistency, called release consistency. Re-
lease consistency exploits information about the property
of shared-memory accesses to impose fewer restrictions on
event ordering than previously proposed models, and thus
offers the potential for higher performance. To avoid hav-
ing the programmer deal directly with the more complex
semantics associated with the release consistency model,
we presented a framework for distinguishing accesses in
programs so that the same results are obtained under RC
and SC models. In particular, we introduced the notion
of properly-labeled (PL) programs and proved the equiv-
alence between the SC and the RCsc model for PL pro-
grams. This is an important result since programmers can
use the well defined semantics of sequential consistency to

write their programs, and as long as the programs are PL,
they can be safely executed on hardware implementing the
release consistency model.

To implement the various consistency models, we pro-
pose the use of fence operations. Three different kinds
of fence operations – full fence, write fence, and imme-
diate fence – were identified. Careful placement of these
multiple types of fences enabled us to minimize the dura-
tion for which the processor is blocked. We also discussed
subtle ordering problems that arise in multiprocessors with
caches and provided solutions to them. Finally, practical
implementation techniques were presented in the context
of the Stanford DASH multiprocessor.

We are currently building the prototype for the DASH
architecture, which supports the release consistency model.
We are using a simulator for the system to quantify the
performance differences among the models on real appli-
cations and to explore alternative implementations for each
model. We are also exploring compiler techniques to ex-
ploit the less strict restrictions of release consistency. Fi-
nally, we are investigating programming language and pro-
gramming environment enhancements that allow the com-
piler to gather higher level information about the shared
accesses.

8 Acknowledgments

We would like to thank Rohit Chandra for several useful
discussions, and Jaswinder Pal Singh and Sarita Adve for
their comments on the paper. We also wish to thank the
reviewers for their helpful comments. This research was
supported by DARPA contract N00014-87-K-0828. Daniel
Lenoski is supported by Tandem Computer Incorporated.
Phillip Gibbons is supported in part by NSF grant CCR-
86-10181 and DARPA contract N00014-88-K-0166.

References

[1] Sarita Adve and Mark Hill. Personal communication.
March 1990.

[2] Forest Baskett, Tom Jermoluk, and Doug Solomon.
The 4D-MP graphics superworkstation: Computing
+ graphics = 40 MIPS + 40 MFLOPS and 100,000
lighted polygons per second. InProceedings of the
33rd IEEE Computer Society International Confer-
ence – COMPCON 88, pages 468–471, February
1988.

[3] W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3
processor-memory element. InProceedings of the
1985 International Conference on Parallel Process-
ing, pages 782–789, 1985.

[4] Michel Dubois, Christoph Scheurich, and Fayé
Briggs. Memory access buffering in multiprocessors.

Page 11



In Proceedings of the 13th Annual International Sym-
posium on Computer Architecture, pages 434–442,
June 1986.

[5] James R. Goodman. Cache consistency and sequen-
tial consistency. Technical Report no. 61, SCI Com-
mittee, March 1989.

[6] Anoop Gupta, Milind Tambe, Dirk Kalp, Charles
Forgy, and Allen Newell. Parallel implementation
of OPS5 on the Encore multiprocessor: Results and
analysis.International Journal of Parallel Program-
ming, 17(2):95–124, 1988.

[7] Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):241–248,
September 1979.

[8] Dan Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The directory-
based cache coherence protocol for the DASH mul-
tiprocessor. InProceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, May
1990.

[9] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har-
vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,
V. A. Norton, and J. Weiss. The IBM research par-
allel processor prototype (RP3): Introduction and ar-
chitecture. InProceedings of the 1985 International
Conference on Parallel Processing, pages 764–771,
1985.

[10] C. Scheurich and M. Dubois. Correct memory opera-
tion of cache-based multiprocessors. InProceedings
of the 14th Annual International Symposium on Com-
puter Architecture, pages 234–243, June 1987.

[11] Christoph Scheurich.Access Ordering and Coher-
ence in Shared Memory Multiprocessors. PhD thesis,
University of Southern California, May 1989.

[12] G. E. Schmidt. The Butterfly parallel processor. In
Proceedings of the Second International Conference
on Supercomputing, pages 362–365, 1987.

[13] Dennis Shasha and Marc Snir. Efficient and correct
execution of parallel programs that share memory.
ACM Transactions on Programming Languages and
Systems, 10(2):282–312, April 1988.

Appendix A: Proof for SC = RCsc

In this appendix we present a proof of the equivalence
betweenSC andRCsc for PL programs (with respect to
SC). For brevity, we will use the termsRC to denote
RCsc and PL to denote PL programs properly-labeled with
respect toSC. We begin with a few definitions.

An executionof a program on an implementation defines
a pair, (T , EO), as follows.

� The per-processor trace, T , is a set of traces, one for
each processor, showing the instructions executed by
the processor during the execution. The order among
instructions in the trace is adjusted to depict program
order for each processor.

� The execution order,EO, specifies the order in which
conflicting accesses are executed. (Recall from sec-
tion 3 that two accesses,u andv, conflictif and only if
u andv are to the same location and one is a STORE.)
EO fully specifies the results of a program, since any
sequential execution of the accesses in an order that
extends the execution order (i.e., topological sort) will
give the same result.

The delay relation, D, is an ordering constraint among in-
structions within a processor as imposed by some event
ordering. For example, the delay relation forRC en-
forces Condition 3.1, as well as local data and control
dependences. These notions of execution order, conflict-
ing accesses, and delay relation were developed previously
in [13]. To prove various equivalences, we extend the no-
tions presented in [13] to handle conditionals, non-atomic
writes, and consistency models other thanSC (we are
preparing a technical report on this). Although writes are
not atomic, we can assume that conflicting accesses are
totally ordered byEO since the implementations we are
considering provide cache coherence (i.e., all processors
observe two writes to the same location in the same or-
der). Also we make the common assumption that accesses
are only to words of memory: each read access returns the
value written by some (single) write access.

The execution orderEO on an implementation is con-
sidered legal ifEO[D is acyclic. The graph correspond-
ing to EO [D is called theprecedence graph, G, of the
execution. Thus a cycle inG denotes an impossible ex-
ecution. An instructionx reachesan instructiony in an
execution if there is a (directed) path fromx to y in the
precedence graph of the execution.

We partitionEO into two disjoint sets,EO
s

andEO
o

,
whereEO

s

defines the execution order among any two
(conflicting) special accesses andE

o

defines the execution
order among any two (conflicting) accesses where at least
one is an ordinary access. Likewise,G is partitioned into
G

s

andG
o

.
Given these preliminary definitions, we now proceed

with the proof. We first assume that special accesses are
not affected by ordinary accesses. This permits us to claim
thatEO

s:SC = EO

s:RC follows if T
SC

= T

RC

. We will
later describe how this restriction can be lifted. In lemma
1, we show that if the same per-processor trace can oc-
cur on bothSC andRC, then the program results are the
same. This lemma is then used to prove the main theo-
rem, which shows thatSC = RC for all PL programs.
The difficulty in extending the lemma to the main theorem
is in showing that any legal trace onRC may occur on
SC despite any conditional branches or indirect address-
ing. Note thatSC � RC for any program, so it suffices
to show thatRC � SC.

Page 12



Lemma 1: Consider an executionE = (T

RC

; EO

RC

) on
RC of a PL program. If there exists a trace onSC such
thatT

SC

= T

RC

, then there is a corresponding execution
onSC with the same results (i.e.,EO

SC

= EO

RC

).
Proof: Since the event ordering on special accesses is
SC for both implementations, and special accesses are not
affected by ordinary accesses,G

s:SC = G

s:RC is a legal
precedence graph for special accesses onSC. We will
show there exists a legal execution onSC, based onG

s:SC,
such thatEO

o:SC = EO

o:RC .
Let u andv be two conflicting accesses fromT

SC

, such
thatu is an ordinary access. Ifu andv are on the same
processor, then the execution order,EO, between the two
is determined by local dependences and is enforced in the
same way onSC andRC.

If u and v are on different processors, then the two
accesses need to be ordered through special accesses for
the program to be a PL program. Accessv can be either
an ordinary or a special access. Consider the case wherev

is an ordinary access. Foru andv to be ordered, there is
either (a) a releaseREL

u

and an acquireACQ
v

such that
REL

u

reachesACQ
v

in G

s:SC or (b) a releaseREL
v

and an acquireACQ
u

such thatREL
v

reachesACQ
u

in
G

s:SC. If (a) holds, thenu beforev, uEOv, is the only
possible execution order onSC. The same is true onRC,
sincevEOu will lead to a cycle in the precedence graph.
This is because clauses (A) and (B) of Condition 3.1 are
upheld. Likewise, a symmetric argument can be used if (b)
holds. The same correspondence betweenSC andRC can
be shown for the case wherev is a special access. Thus
the execution orderEO betweenu and v is the same on
SC andRC.

SinceEO
s:SC = EO

s:RC, and this execution order de-
termines anE

o

that is the same for bothSC andRC, we
have shown thatEO

SC

= EO

RC

. 2

Therefore,RC � SC for a program if, for every exe-
cution of a program onRC, there is an execution onSC
such that the traces are the same.

How can the traces for a program onSC andRC dif-
fer? There are two possible sources for any discrepancies
between traces: conditional control flow (affecting which
instructions are executed) and indirect addressing (affect-
ing the location accessed by a read or write instruction).
In what follows, we consider only conditionals. Extending
the argument to handle programs with indirect addressing
is trivial, and omitted in this proof.

We will prove thatSC = RC for PL programs as fol-
lows. We must show that there exists an execution onSC

in which the outcome of each conditional is the same. A
conditional for which we have shown this correspondence
will be designatedproven, otherwise it will be calledun-
proven. Initially, all conditionals in the trace onRC are
unproven. We will construct the trace onSC inductively
in a series of stages, where at each stage, we show that an
unproven conditional occurs the same way onSC. Once
all conditionals are proven, the traces must be equal and
we can apply lemma 1.

Theorem 2: SC = RC for PL programs.
Proof: Let P be a PL program. Consider any execution
E = (T

RC

; EO

RC

) on RC. Let G
RC

be the precedence
graph forE. By the definition of a precedence graph, any
instruction that affected another instruction inE, e.g., af-
fected the existence of a write access or the value returned
on a read access, reaches that instruction inG

RC

.
As indicated above, we proceed in a series of stages,

one for each conditional. At each stage, we construct an
execution onSC such that some unproven conditional and
all previously proven conditionals have the same outcome
on SC andRC.

We begin with stage 1. The proof for stage 1 will be
shown using a series of claims. As we shall see, the proof
for each remaining stage is identical to stage 1.

SinceG
RC

is acyclic, there is at least one unproven
conditional,u1, that is not reached by any other unproven
conditional. Letp

u1 be the processor that issuedu1. LetA1
be the set of instructions that reachu1 in G

RC

. Although
A1 is only a subtrace (not even a prefix) of the entire
executionE, we will show that the setA1, constructed in
this way, can be used to proveu1.

Let A1s be the special accesses inA1. We have the
following characterization ofA1s.

Claim 1: All special accesses program ordered prior to an
access inA1s are themselves inA1s. There are no special
accesses within any branch of an unproven conditional,u,
whereu is program ordered prior to an access inA1s.
Proof: We first show that the claim holds for acquires.
Any acquire program ordered prior to an access,x, in A1
reachesx and hence will itself be inA1s. There are no
acquires within any branch of an unproven conditional pro-
gram ordered prior to an access inA1s since no access after
such a conditional can complete prior to the conditional it-
self.

We claim that the last program ordered access inA1 for
each processor (other thanp

u1) is a special access. This
fact can be shown by contradiction. Letz1, an ordinary
access, be the last program ordered access for some pro-
cessor inA1 (other thanp

u1). Sincez1 is in A1, there is
a path,z1; z2; . . . ; u1, in G

RC

. No access inA1 is locally
dependent onz1 since it is the last program ordered access
on its processor. SinceP is a PL program, a release below
z1 is needed to order the access ahead ofz2 onSC. How-
ever, there is no release belowz1 in A1. Thus the only
way for z1 to affect z2 on RC would be in a competing
manner that was prevented onSC. This can happen only
if some acquire above eitherz1 or z2 were missing inA1s,
which contradicts the claim of the previous paragraph.

Claim 1 follows since program order is preserved on
RC for special accesses.2

Given this characterization ofA1s, we show that there
is an execution onSC such that special accesses are the
same as inA1. In other words, we show that both imple-
mentations have the sameG

s

for A1. This will be used
to show that the results returned by read accesses are the
same and hence the outcome of conditionalu1 is the same.

Page 13



Claim 2: There is a prefix of an execution onSC such
that the special accesses are precisely the accesses inA1s
and the execution order among these special accesses is
identical toEO

s:RC .
Proof: The special accesses inA1s are self-contained, i.e.,
there are no acquires inA1s that are waiting on releases not
in A1s. By claim 1, there is an execution onSC such that
all special accesses inA1s occur. Since special accesses
areSC on both implementations, the same execution or-
der among these special accesses is possible on both. To
complete the proof, we argue that no other special access
(i.e., not inA1

s

) can be forced to occur prior to an access
in A1

s

in every execution onSC that includesA1s. How
can a special access be forced to occur onSC? Either the
special access is program ordered prior to some access in
A1s or it is a release satisfying an acquire that is not sat-
isfied inA1s. But the former case contradicts claim 1 and
the latter case contradictsA1s being self-contained. Thus
there is an execution onSC and a point in this execu-
tion in which the special accesses performed are precisely
the accesses inA1

s

, and the execution order among these
special accesses is identical toEO

s:RC . 2

Claim 3: There is an execution onSC in which the out-
come ofu1 is the same as inE.
Proof: SinceA1 consists of all instructions that affectu1 in
E, the outcome ofu1 in the full executionE is determined
by only the accesses inA1. Thus it suffices to show that (a)
there is an executionE

SC

onSC in which the instructions
in A1 occur, (b) all read accesses inA1 return the same
results inE

SC

as inE, and (c) the outcome ofu1 in E

SC

is determined by only the accesses inA1.
The accesses inA1 will occur on SC since none of

them are within an unproven conditional. This follows
from the fact that if an access within a conditional can
reachu1, then so can its conditional (sinceRC enforces
control dependence).

Consider the prefix execution,E1, constructed in claim
2, and letEO1s be the execution order among special ac-
cesses inA1. SinceE1 is a prefix of a PL program,EO1s
determinesEO

o:SC for the accesses inA1.
We claim thatEO1s determinesEO

o:RC for the accesses
in A1. We must show that the instructions inE1 that are
not in A1 have no effect on the results returned by read
accesses inA1. Consider a write access,w1, in E1 that
reaches a read access,r1, in A1 onSC, but does not reach
it in G

RC

. Sincer1 is inA1, it cannot be reached onG
RC

by an unproven conditional. Thus any local dependence
chain fromw1 to r1, inclusive, does not include any in-
struction within an unproven conditional. Hence, if there
is a local dependence onSC, then there will be one on
RC. Moreover, ifw1 is ordinary, then it must be followed
by a release onSC. Since all accesses complete onRC
prior to a release,w1 must be inA1 and reach the release
in G

RC

. SinceEO1s is the execution order for bothSC
andRC, w1 must reachr1 in G

RC

. Similarly, if w1 is a
special access, it must reachr1 in G

RC

. In either case, we
have a contradiction.

Therefore, the results returned by read accesses inA1
onSC depend only on other accesses inA1. Thus we can
view the traces as being the same. Hence by lemma 1, all
read accesses inA1 up to the last special access onp

u1

return the same results inE
SC

as inE.
Finally, the outcome of conditionalu1 depends on the

values read byp
u1. These read accesses can be ordinary or

special. SinceP is a PL program, an ordinary read access
affectingu1 returns the value of a write access,w1, that
is ordered by local dependence or through an acquire. A
special read access affectingu1 is already shown to return
the correct value. Thus the outcome ofu1 is the same as
in E. 2

Stagek > 1. Inductively, we can assume thatk � 1
unproven conditionals have been shown to correspond on
SC andRC, such that there is akth unproven conditional,
u

k

, that is not reached by any other unproven conditional.
At this stage, we add to the current subtrace all instructions
that can reachu

k

. Let A
k

be this new set of instructions.
As before, althoughA

k

is not a complete trace onSC
(or even a prefix), we can argue that there is at least one
execution onSC such that (1) the sameG

s

occurs onA
k

in both SC andRC, and thus (2) the outcome ofu
k

is
the same as inE. The arguments are identical to those
in claims 1–3 above, whereu1; . . . ; u

k�1 are no longer
unproven conditionals.

Therefore, by induction, there is an execution onSC
such that the outcome of all conditionals is the same as in
E. Since all unprovens correspond, we know that the full
traces are equal. Thus there exists a valid traceT

SC

of P
on SC such thatT

SC

= T

RC

. Hence by lemma 1, there
exists an execution onSC such thatE

SC

= E

RC

, i.e., the
results are the same. This shows thatRC � SC for P .
SinceSC � RC, it follows thatRC = SC for P . 2

We have assumed for the above proof that special ac-
cesses are not affected by ordinary accesses. This is used
in the proof, for example, when we assume in lemma 1 that
EO

s:SC = EO

s:RC follows if T
SC

= T

RC

. In general,
however, an ordinary access can affect a special access,
e.g., it can be to the same location. Our proof can be
extended to handle this general case in which special ac-
cesses are affected by ordinary accesses, as follows. Con-
sider special read accesses, conditional branches, and ac-
cesses with indirect addressing all to be initially unproven.
As above, include one new unproven at each stage, un-
til all are proven. Since we are proving special read ac-
cesses along the way, we ensure the correspondence among
special accesses betweenSC andRC at each stage (i.e.,
EO

s:SC = EO

s:RC ). Therefore, theorem 2 holds for gen-
eral PL programs.

Adve and Hill [1] have proved a similar equivalence
between sequential consistency and their version of weak
ordering.

Page 14


