Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract “next store” become unclear when there are multiple pro-
cessors reading and writing a location. Furthermore, the

Scalable shared-memory multiprocessors distribute memerder in which shared memory operations are done by one
ory among the processors and use scalable interconne@rocess may be used by other processes to achieve implicit
tion networks to provide high bandwidth and low latency synchronization. For example, a process may set a flag
communication. In addition, memory accesses are cached;ariable to indicate that a data structure it was manipulat-
buffered, and pipelined to bridge the gap between theing earlier is now in a consistent state. Consistency models
slow shared memory and the fast processors. Unless carglace specific requirements on the order that shared mem-
fully controlled, such architectural optimizations can cause ory accessesefenty from one process may be observed
memory accesses to be executed in an order different fronby other processes in the machine. More generally, the
what the programmer expects. The set of allowable mem-consistency model specifies what event orderings are le-
ory access orderings forms the memory consistency modefjal when several processes are accessing a common set of
or event ordering model for an architecture. locations.

This paper introduces a new model of memory con-
sistency, calledelease consistengyhat allows for more
buffering and pipelining than previously proposed models.

Several memory consistency models have been proposed
in the literature: examples include sequential consistency

2 - [7], processor consistency [5], and weak consistency [4].
A framework for c!ass_lfymg shared accesses and reasoning, sequential consistenayiodel [7] requires the execu-
about event ordering is de\{eloped. The release qon5|ste_nct§|10n of a parallel program to appear as some interleaving
model is shown to be equivalent to the sequential CONSis-¢' 0 ayecytion of the parallel processes on a sequen-
tency model for parallel programs with sufficient synchro- tial machine. While conceptually simple, the sequential
nization. Possible performance gains from the less strict ' '

. : Oconsistency model imposes severe restrictions on the out-
constraints of the release consistency model are explore

: o Lo : Standing accesses that a process may have and effectively
Finally, practical implementation issues are discussed, con:

centrating on issues relevant to scalable architectures prohibits many hardware optimizations that could increa_se
" performance. Other models attempt to relax the constraints

on the allowable event orderings, while still providing a
1 Introduction reasonable programming model for the programmer.

Architectural optimizations that reduce memory latency
Serial computers present a simple and intuitive model ofare especially important for scalable multiprocessor archi-
the memory system to the programmer. A load operationtectures. As a result of the distributed memory and gen-
returns the last value written to a given memory location. eral interconnection networks used by such multiproces-
Likewise, a store operation binds the value that will be sors [8, 9, 12], requests issued by a processor to distinct
returned by subsequent loads until the next store to thememory modules may execute out of order. Caching of
same location. This simple model lends itself to efficient data further complicates the ordering of accesses by intro-
implementations—current uniprocessors use caches, writelucing multiple copies of the same location. While mem-
buffers, interleaved main memory, and exploit pipelining ory accesses are atomic in systems with a single copy of
techniques. The accesses may even be issued and comata (a new data value becomes visible to all processors
pleted out of order as long as the hardware and compilerat the same time), such atomicity may not be present in
ensure that data and control dependences are respected.cache-based systems. The lack of atomicity introduces ex-
For multiprocessors, however, neither the memory sys-tra complexity in implementing consistency models. A
tem model nor the implementation is as straightforward. system architect must balance the design by providing a
The memory system model is more complex because thenemory consistency model that allows for high perfor-

definitions of “last value written”, “subsequent loads”, and mance implementations and is acceptable to the program-

mer.

From this point on, we implicitly assume that unipro-

In this paper, we present a new consistency model calleccessor control and data dependences are respected. In ad-

release consistencywhich extends the weak consistency
model [4] by utilizing additional information about shared

dition, we assume that memory is kept coherent, that is,
all writes to the same location are serialized in some or-

accesses. Section 2 presents a brief overview of previouslgler and are performed in that order with respect to any
proposed consistency models. The motivation and framefrocessor. We have formulated the conditions for satisfy-
work for release consistency is presented in Section 3. Secing each model such that a process needs to keep track of

tion 4 considers equivalences among the several model
given proper information about shared accesses. Section

only requests initiated by itself. Thus, the compiler and
Bardware can enforce ordering on a per process(or) basis.

discusses potential performance gains for the models withVe defineprogram orderas the order in which accesses

relaxed constraints.

Finally, Section 6 discusses imple-

occur in an execution of the single process given that no

mentation issues, focusing on issues relevant to scalableeordering takes place. When we use the phta@revi-

architectures.

2 Previously Proposed Memory Con-
sistency Models

ous accesses'we mean all accesses in the program order
that are before the current access. In presenting the event
ordering conditions to satisfy each model, we assume that
the implementation avoids deadlock by ensuring that ac-
cesses that occur previously in program order eventually
get performed (globally performed).

In this section, we present event ordering requirements for .)
supporting the sequential, processor, and weak consistencg.1 Sequential Consistency

models. Although the models discussed in this section

have already been presented in the literature, we discuss

them here for purposes of completeness, uniformity in ter-
minology, and later comparison. Readers familiar with the
first three models and the event ordering terminology may
wish to skip to Section 3.

To facilitate the description of different event orderings,

we present formal definitions for the stages that a memory

request goes through. The following two definitions are
from Duboiset al. [4, 10]. In the following, P; refers to
processot.

Definition 2.1: Performing a Memory Request

A LoaD by P; is consideregerformed with respect
to P, at a point in time when the issuing ofsaoRE
to the same address B, cannot affect the value re-
turned by theLoap. A sTore by P; is considered
performed with respect t&, at a point in time when
an issued.oaD to the same address), returns the
value defined by thisToRE (or a subsequerstrore
to the same location). An accesgisrformedwhen it
is performed with respect to all processors.

Definition 2.2 describes the notion globally performed
for LoaDS.

Definition 2.2: Performing a Loap Globally

A LoaD is globally performedf it is performedand

if the sToRE that is the source of the returned value
has been performed.

The distinction between performed and globally per-
formedroaDp accesses is only present in architectures with
non-atomiGTORES. ASTORE is atomic if the value stored

Lamport [7] definesequential consisten@s follows.

Definition 2.3: Sequential Consistency

A system is sequentially consistent if the result of any
execution is the same as if the operations of all the
processors were executed in some sequential order, and
the operations of each individual processor appear in
this sequence in the order specified by its program.

Scheurich and Dubois [10, 11] have described event or-
der restrictions that guarantee sequential consistency. Con-
dition 2.1 presents sufficient conditions for providing se-
guential consistency (these differ slightly from conditions
given in [10]).

Condition 2.1: Sufficient Conditions for Sequential
Consistency

(A) before aLoap is allowed to perform with respect
to any other processor, all previow®aD accesses
must beglobally performed and all previousTore
accesses must be performed, and

(B) before asTore is allowed to perform with respect
to any other processor, all previow®aD accesses
must beglobally performed and all previousTore
accesses must be performed.

2.2 Processor Consistency

To relax some of the orderings imposed by sequential con-
sistency, Goodman introduces the conceptpaofcessor

consistency5]. Processor consistency requires that writes
issued from a processor may not be observed in any or-
der other than that in which they were issued. However,
the order in which writes from two processors occur, as

becomes readable to all processors at the same time. labserved by themselves or a third processor, need not be

architectures with caches and general interconnection netidentical.

works, asToRE operation is inherently non-atomic un-

Processor consistency is weaker than sequen-
tial consistency; therefore, it may not yield ‘correct’ exe-

less special hardware mechanisms are employed to assucation if the programmer assumes sequential consistency.

atomicity.

However, Goodman claims that most applications give the

Page 2

same results under the processor and sequential consis-
tency models. Specifically, he relies on programmers to
use explicit synchronization rather than depending on the
memory system to guarantee strict event ordering. Good-
man also points out that many existing multiprocessors
(e.g., VAX 8800) satisfy processor consistency, but do not
satisfy sequential consistency.

Condition 2.3: Conditions for Weak Consistency

(A) before an ordinary.oap or STORE access is al-
lowed to perform with respect to any other proces-
sor, all previousynchronizatioraccesses must be per-
formed, and

(B) before asynchronizatioraccess is allowed to per-
form with respect to any other processor, all previ-
ous ordinaryLoAD andsTORE accesses must be per-

formed, and
(C) synchronizatioraccesses are sequentially consis-
tent with respect to one another.

The description given in [5] does not specify the or-
dering of read accesses completely. We have defined the
following conditions for processor consistency.

3 The Release Consistency Model

Condition 2.2: Conditions for Processor Consis-
tency

(A) before ar.oap is allowed to perform with respect
to any other processor, all previow®AD accesses
must be performed, and

(B) before asTore is allowed to perform with respect
to any other processor, all previous accessesps
andsToRES) must be performed.

This section presents the framework for release consis-
tency. There are two main issues explored in this section—

performance and correctness. For performance, the goal is
to exploit additional information about shared accesses to

develop a memory consistency model that allows for more

efficient implementations. Section 3.1 discusses a catego-
rization of shared accesses that provides such information.
For correctness, the goal is to develop weaker models that
are equivalent to the stricter models as far as the results of
programs are concerned. Section 3.2 introduces the notion

The above conditions allow reads following a write to ;
bypass the write. To avoid deadlock, the implementationmc p_roperly-labeled programs that IS Iater_used to prove
' equivalences among models. Finally, Section 3.3 presents

should guarantee that a write that appears previously in ; d / .
program order will eventually perform. the release consistency model and discusses how it exploits

the extra information about accesses.

3.1 Categorization of Shared Memory Ac-

2.3 Weak Consistency cesses

We first describe the notions afonflicting accessegas

A weaker consistency model can be derived by relatingpresented in [13]) andompeting accesseSwo accesses
memory request ordering to synchronization points in the are conflicting if they are to the same memory location and
program. As an example, consider a processor updatingt least one of the accesses ismre.! Consider a pair
a data structure within a critical section. If the compu- of conflicting accesses; anda; on different processors.
tation requires severalrorE accesses and the system is If the two accesses are not ordered, they may execute si-
sequentially consistent, then eachore will have to be multaneously thus causing a race condition. Such accesses
delayed until the previousTore is complete. But such a1 anda; form acompeting pair If an access is involved
delays are unnecessary because the programmer has #l-a competing pair under any execution, then the access
ready made sure that no other process can rely on thais considered @ompeting access
data structure being consistent until the critical section is A parallel program consisting of individual processes
exited. Given that all synchronization points are identi- specifies the actions for each process and the interac-
fied, we need only ensure that the memory is consistentions among processes. These interactions are coordinated
at those points. This scheme has the advantage of providthrough accesses to shared memory. For example, a pro-
ing the user with a reasonable programming model, whileducer process may set a flag variable to indicate to the
permitting multiple memory accesses to be pipelined. Theconsumer process that a data record is ready. Similarly,
disadvantage is that all synchronization accesses must bprocesses may enclose all updates to a shared data struc-
identified by the programmer or compiler. ture within lock and unlock operations to prevent simulta-

The weak consistencynodel proposed by Duboist neous access. All such accesses used to enforce an order-

al. [4] is based on the above idea. They distinguish be-ing among processes are callgghchronization accesses

tween ordinary shared accesses and synchronization a(‘S_ynchronization accesses have two distinctive character-
cesses, where the latter are used to control concurrenc tics: (It) they are bﬁomp%t'?r? aiﬁesses, d_W|th_t.0ne dpr__o-
between several processes and to maintain the integrit €SS wriling a variable an € other reading 1t, an (.")

of ordinary shared data. The conditions to ensure wea hey are frequently used to order conflicting accesses (i.e.,
consistency are given below (slightly different from the
conditions given in [4]).

1A read-modify-write operation can be treated as an atomic access
consisting of both a load and a store.

Page 3

shared access shared

competing non-competing specia) ordinary
synchronization non-synchronization sync, nsync,
acquire release acq rel.
Figure 1: Categorization of shared writable accesses. Figure 2: Labels for memory accesses.

make them non-competing). For example, the lock andadjacent
unlock synchronization operations are used to order the
non-competing accesses made inside a critical section.

Synchronization accesses can further be partitioned intd3.2 Properly-Labeled Programs
acquireandreleaseaccesses. An acquire synchronization
access (e.g., a lock operation or a process spinning foiThe previous subsection described a categorization based
a flag to be set) is performed to gain access to a set obn the intrinsic properties of an access. We now describe
shared locations. A release synchronization access (e.gthe labelings for an access. The label represents what is
an unlock operation or a process setting a flag) grantsasserted about the categorization of the access. Itis the re-
this permission. An acquire is accomplished by readingsponsibility of the compiler or the programmer to provide
a shared location until an appropriate value is read. Thus)abels for the accesses. Figure 2 shows possible label-
an acquire is always associated with a read synchronizatioings for memory accesses in a program. The labels shown
access (atomic read-modify-write accesses are discussed @iorrespond to the categorization of accesses depicted in
Section 3.2). Similarly, a release is always associated withFigure 1. The subscripl denotes that these are labels.
a write synchronization access. The labels at the same level are disjoint, and a label at a

Not all competing accesses are used as synchronizdeaf implies all its parent labels.
tion accesses, however. As an example, programs that The release consistency model exploits the information
use chaotic relaxation algorithms make many competingconveyed by the labels to provide less strict event order-
accesses to read their neighbors’ data. However, these a@ag constraints. Thus, the labels need to have a proper
cesses are not used to impose an ordering among the parakelationship to the actual category of an accesses to ensure
lel processes and are thus considemed-synchronization correctness under release consistency. For example, the
competing accesses in our terminology. Figure 1 showsordinaryy label asserts that an access is non-competing.
this categorization for memory accesses. Since the hardware may exploit thedinaryr label to

The categorization of shared accesses into the suggestatbe less strict event orderings, it is important that the
groups allows one to provide more efficient implementa- ordinaryy, label be used only for non-competing accesses.
tions by using this information to relax the event ordering However, a non-competing access can be conservatively la-
restrictions. For example, the purpose of a release access keled asspecialy,. In addition, it is important thagnough
to inform other processes that accesses that appear befog@mpeting accesses be labeledaag;, and relr, to en-
it in program order have completed. On the other hand,sure that the accesses labetedinary,, are indeed non-
the purpose of an acquire access is to delay future accesgpmpeting. The following definition provides a conceptual
to data until informed by another process. The categoriza-model for determining whether enoughecial;, accesses
tion described here can be extended to include other usefunave been categorized agncy, (again assuming the se-
information about accesses. The tradeoff is how easily thafiuential consistency model).
extra information can be obtained from the compiler or the
programmer and what incremental performance benefits it pefinition 3.1: Enough Syncy Labels
can provide. Pick any two accesses on processorP, andwv on

Finally, the method for identifying an access as a com- processorP, (P, not the same a®,) such that the
peting access depends on the consistency model. For ex- two accesses conflict, and at least one is labeled as
ample, it is possible for an access to be competing under ~ ordinaryy. Under any legal interleaving, i appears
processor consistency and non-competing under sequential ~ &fter (before)u, then there needs to be at least one
consistency. While identifying competing pairs is difficult syncy, Write (read) access oR, and onesyncy, read
in general, the following conceptual method may be used (write) on P, separating: andw, such that the write

. . - appears before the read. There amughaccesses

under Squentlal consistency. Two Confllct!ng ac_ce_§§es labeled asyncy if the above condition holds for all
an_dbz on different processes form a competing pair if there possible pairs: andw. A syncy, read has to be labeled
exists at least one legal interleaving wheéteand b, are asacgz and asyncy, write has to be labeled agly.

Page 4

To determine whether all labels are appropriate, we 3. If competing and non-competing accesses are distin-
present the notion of properly-labeled programs. guished and synchronization and non-synchronization
accesses are distinguished, then all non-competing
accesses can be labeled asdinarys, all non-
hold: (shared access) C sharedy, competing C synchronization accesses can be labeledag:icy,,
specialy, andenough(as defined abovelpecial , ac- and all synchronization accesses are labeledcag
cesses are labeled asgz, andrely,. andrely, (as before).

Definition 3.2: Properly-Labeled (PL) Programs
A program isproperly-labeled (PL)if the following

An acqy, or relp label implies thesyncy label. Any
special;, access that is not labeled agncy is labeled
asnsyncr. In addition, anyshared; access that is not
labeled asspecialy, is labeled asordinary;. Note that
this categorization is based on access and not on locatio
For example, it is possible that of two accesses to the sam
location, one is labelegpecial;, while the other is labeled
ordinaryy,.

Most architectures provide atomic read-modify-write op-
erations for efficiently dealing with competing accesses. The second way of producing PL programs is to use a
The load and store access in the operation can be labelegrogramming methodology that lends itself to proper la-
separately based on their categorization, similarly to indi- beling. For example, a large class of programs are writ-
vidual load and store accesses. The most common labeakn such that accesses to shared data are protected within
for a read-modify-write is arucgy for the load and an critical sections. Such programs are callgghchronized
nsyncy, for the store. A prevalent example of this is an programs whereby writes to shared locations are done in
atomic test-and-set operation used to gain exclusive access mutually exclusive manner (no other reads or writes can
to a set of data. Although the store access is necessary toccur simultaneously). In a synchronized program, all ac-
ensure mutual exclusion, it does not function as either ancesses (except accesses that are part of the synchroniza-
acquire or a release. If the programmer or compiler cannotion constructs) can be labeled agdinaryr. In addi-
categorize the read-modify-write appropriately, the conser-tion, since synchronization constructs are predefined, the
vative label for guaranteeing correctnessdég; andrelr, accesses within them can be labeled properly when the
for the load and store respectively (the operation is treatedconstructs are first implemented. For this labeling to be
as both an acquire and a release). proper, the programmer must ensure that the program is

There is no unique labeling to make a program a PL pro-synchronized.
gram. As long as the above subset properties are respected
the program will be considered properly-labeled. Proper) : .
labeling is not an inherent property of the program, but sue is whether the consistency model exploits the extra

imol ty of the labels. Therefore, information con_veyed by the Ia_\bels. The sequen_tial and
SIMpY & property ot e 1avels eretore, any prOgra-méJrocessor consistency models ignore all labels aside from

sharedr. The weak consistency model ignores any label-

the labeling, the higher is the potential for performance : ; . ¢
benefits 9 9 P P ings pastordinaryy andspecialr. In weak consistency,

Given perfect information about the category of an ac- an access labelespecialy, is treated as a synchronization

cess, the access can be easily labeled to provide a PL pr@_ccess and as both an acquire and a release. In contrast,

gram. However, perfect information may not be available (€ release consistency model presented in the next sub-
at all imes. Proper labeling can still be provided by be- section exploits the information conveyed by the labels at
ing conservative. This is illustrated in the three possible € l€aves of the labeling tree.

labeling strategies enumerated below (from conservative From this point on, we do not distinguish between the
to aggressive). Only leaf labels shown in Figure 2 are categorization and the labeling of an access, unless this
discussed (remember that a leaf label implies all parenfdistinction is necessary.

labels).

We discuss two practical ways for labeling accesses to
provide PL programs. The first involves parallelizing com-

ilers that generate parallel code from sequential programs.
I'gince the compiler does the parallelization, the information
about which accesses are competing and which accesses
are used for synchronization is known to the compiler and
can be used to label the accesses properly.

"Given a program is properly-labeled, the remaining is-

1. If competing and non-competing accesses can not be
distinguished, then all reads can be labelet:ag,
and all writes can be labeled asi;,.

.3 Rel nsisten
2. If competing accesses can be distinguished from non-3 3 elease Consistency

competing accesses, but synchronization and non-

synchronization accesses can not be distinguishedRelease consistency is an extension of weak consistency
then all accesses distinguished as non-competing cathat exploits the information about acquire, release, and

be labeled asrdinaryy and all competing accesses non-synchronization accesses. The following gives the

are labeled agcqy andrel; (as before). conditions for ensuringelease consistency

Page 5

Condition 3.1: Conditions for Release Consistency
(A) before an ordinary.oaD or STORE access is al-
lowed to perform with respect to any other processor,
all previousacquireaccesses must be performed, and

LOAD

Y v cannot perform with respect to

any other processor until u is
performed

E

LOAD

M
" v
STORE]| u X
H v cannot perform with respect to
‘ any other processor until u is
v

i

(B) before areleaseaccess is allowed to perform with W —
respect to any other processor, all previous ordinary o o globally performed
t,((:))AD an_dTTORE accesses must be pe_rf(t)rmtedztﬁnd '.“ FORDSTOR | LOADS an 4 STORES can
Special accessanwe processor consistent wi re- . perform in any order as long
H . as local data and control
spect to one another. gequ_ertnial (F:’rocestsor LOADISTORE | dependences are observed
onsistency onsistency
Four of the ordering restrictions in weak consistency are [AcquiRe | [AcquiRe | [poqure] [Acaure]
not present in release consistency. The first is that ordi- - F oo
naryLoaD andsToRE accesses following a release access : .
do not have to be delayed for the release to complete; the LOADISTORE ji [LOADETORE
purpose of the release synchronization access is to signal ‘REL'EASE ‘REL;ASE‘

‘ REL;ASE‘ ‘ RELEASE‘

that previous accesses in a critical section are complete, :]
and it does not have anything to say about ordering of W
accesses following it. Of course, the local dependences g PR
within the same processor must still be respected. Second, E

an acquire synchronization access need not be delayed for : : P
previous ordinary.oabd and STORE accesses to be per-
formed. Since an acquire access is not giving permission S -
to any other process to read/write the previous pending lo- \ACQ'U.RE\ \Acq'ums\ 5

: 5 S
‘NSYNC'STORq ‘NSVNC'STORq ::‘-‘“NSYNC STORq :‘NSYNC STOR#

cations, there is no reason for the acquire to wait for them S U T

to complete. Third, a non-synchronization special access : : i
does not wait for previous ordinary accesses and does not LOADISTORE LOADISTORE | } i
delay future ordinary accesses; a non-synchronization ac- ‘REL;ASE‘ e ~

cess does not interact with ordinary accesses. The fourth
difference arises from the ordering of special accesses. Irrdung aneng Ordnanrdering beeenordering ameng Ordnargrdering betven
release consistency, they are only required to be processor \yeak consistency (WCsc) Release Consistency (RCpc)
consistent and not sequentially consistent. For all applica-
tions that we have encountered, sequential consistency angligyre 3: Ordering requirements for different consistency
processor consistency (for special accesses) give the samg,gels.
results. Section 4 outlines restrictions that allow us to show
this equivalence. We chose processor consistency since it
is easier to implement and offers higher performance. executions of programs appear as if the stated conditions
were followed.
. We define the relations (stricter) and= (equal) for
4 Model Equwalences relating the models. 14 and B are different consistency
models, then relatiom > B says that results of execu-

The purpose of this section is to provide more insight tions of a program under model A will be in accordance
into the similarities and differences among the consistencyto legal results for the program under model B, but not
models presented in Sections 2 and 3 by showing relationsiecessarily vice versa. The stricter relation is transitive.
and equivalences among the models. The relationA = B says that for a certain program, mod-

We have presented four consistency models: sequenels A and B cannot be distinguished based on the results
tial consistency (SC), processor consistency (PC), wealof the program. Givenrd > B and B > A, we know
consistency with special accesses sequentially consisterd = B. Some obvious relations that hold for any parallel
(WCsc), and release consistency with special accesses prgrogram are:SC > PC, SC > WCsc > RCsc, SC >
cessor consistent (RCpc). Two other models that fit within WCpec > RCpe, PC > RCpc, WCsc > WCpe, and
this framework are weak consistency with special accesse®tCsc > RCpc. However, the stricter relation does not
processor consistent (WCpc) and release consistency withold among the following pairs: (PC,WCsc), (PC,RCsc),
special accesses sequentially consistent (RCsc). Figure @C,WCpc), and (RCsc,WCpc).
depicts the event orderings imposed by Conditions 2.1 Due to the more complex semantics of the weaker mod-
through 2.3 for SC, PC, WCsc, and Condition 3.1 for els, it is desirable to show that the weaker models are
RCpc. The WC and RC models have fewer restrictionsequivalent to the stricter models for certain classes of pro-
on ordering than SC and PC, and RC has fewer restric.grams. Such equivalences would be useful. For example,
tions than WC. Of course, a hardware implementation hasa programmer can write programs under the well defined
the choice of enforcing the stated conditions directly or im- semantics of the sequential consistency model, and as long
posing some alternative set of conditions that guarantee thas the program satisfies the restrictions, it can safely be ex-

Page 6

ecuted under the more efficient release consistency models hidden by overlapping it with other computation, it is
Let us first restrict the programs to PL programs underknown as accessuffering When the latency of an access
sequential consistency. Given such programs, we havés hidden by overlapping with other accesses, it is known as

proved the following equivalences'SC = WCsc = accesyipelining To do buffering and pipelining for read
RC'sc. This is done by provingzCse > SC for PL pro- accesses requires prefetch capability (non-blocking loads).
grams and using the relatidC > WC'sc > RCsc. Our We provide simple bounds for the maximum perfor-

proof technique is based on an extension of the formal-mance gain of each model compared to a base execu-
ism presented by Shasha and Snir [13]. We have includedion model. The base model assumes that the processor
the proof for RCsc > SC in the appendix. A similar is stalled on every access that results in a cache miss. It
proof can be used to shoRC = WC'pc = RCpc for PL is easily shown that sequential consistency and processor
programs under the processor consistency model. consistency can at best gain a factor of 2 and 3, respec-
More equivalences can be shown if we restrict pro- tively, over the base model. This gain arises from the op-
grams to those that cannot distinguish between sequenportunity to buffer accesses. In practice though these two
tial consistency and processor consisten8yf' (= PC). models are not expected to perform much better than the
Given a set of restrictions on competingap accesses, base model, since access buffering is not effective when
it can be shown thaSC = PC.2 The restrictions are the frequency of shared accesses is high.
general enough to allow for all implementations of locks, The weak and release consistency models can poten-
semaphores, barriers, distributed loops, and task queueally provide large gains over the base model, since ac-
that we are interested in. Given competingap ac- cesses and computation in the region between two adjacent
cesses have been restricted (theref&€; = PC) and synchronization points can be overlapped freely as long as
shared accesses are properly labeled to qualify the protniprocessor dependences are respected. In this case, the
gram as a PL program under SC, it is easily shown thatmaximum gain over the base model is approximately equal
SC = PC = WCsc = RCsc = WCpc = RCpc. There- 10 t14:/tser, Wherety,, is the latency of a miss ant.,
fore, such a program could be written based on the sequenis the shortest delay between the issue of two consecutive
tial consistency model and will run correctly under release accesses that miss in a cache. Intuitively, this is because
consistency (RCpc). ordinary accesses within a region can be pipelined. Unlike
The above equivalences hold for PL programs only. Inthe maximum gains for SC and PC, the potential gains for
some programs most accesses are competing (e.g., chaoW¢C and RC are more realizable. For example, several nu-
relaxation) and must be labeled as special for proper la-merical applications fetch and update large arrays as part
beling. While this will make the equivalences hold, the of their computations. The pipelining of reads and writes
program’s performance may not be substantially better onin such applications can lead to large performance gains.
RCsc than on SC. However, such applications are usually The difference in performance between WC and RC
robust enough to tolerate a more relaxed ordering on com-arises when the occurrence of special accesses is more
peting accesses. For achieving higher performance in thesequent. While weak consistency requires ordinary ac-
cases, the programmer needs to directly deal with the morgesses to perform in the region between two synchroniza-
complex semantics of release consistency to reason abotion points, release consistency relaxes this by allowing
the program. an ordinary access to occur anywhere between the previ-
ous acquire and the next release. In addition, an acquire
can perform without waiting for previous ordinary accesses
5 Performance Potentials for Differ- and ordinary accesses can perform without waiting for a
release. Figure 4 shows an example that highlights the
ent Models difference between the two models (assume that there are
) o _ no local dependences).
The main purpose of examining weaker models is perfor- Tq jllustrate the performance gains made possible by
mance. In this section, we explore the potential gains inthe release consistency model, we consider the example of
performance for each of the models. Realizing the full po- doing updates to a distributed hash table. Each bucket in
tential of a model will generally depend on the access be-the table is protected by a lock. A processor acquires the
havior of the program and may require novel architectural |ock for a bucket first. Next, several words are read from
and compiler techniques. Our goal is to provide intuition yecords in that bucket, some computation is performed,
about how one model is more efficient than another. and several words are written based on the result of the
The performance differences among the consistencytomputation. Finally, the lock is released. The processor
models arise from the opportunity to overlap large latency then moves on to do the same sequence of operations on
memory accesses with independent computation and possgnother bucket. Such operations are common in several
bly other memory accesses. When the latency of an accesgpplications (for example, token hash tables in OPS5 [6]).
2Given such restrictions, one can allow an atomic test-and-set used a The locality of data in such an application is low since the
an acquire to perform before a previous special write access (e.g., unset?aSh table. can be large and several .Othe.r processors may
ave modified an entry from the last time it was accessed.

has been performed. We are currently preparing a technical report that _ ! -
describes the details. Therefore, the read and write accesses will miss often.

Page 7

LOAD/STORE

READS WRITES
1 PO COMPUTE ;2= REL,
T 1

! Accesses Serialized
.

LOAD/STORE LOAD/STORE | | LOAD/STORE

2
READS WRITES

— —
ACQ COMPUTE REL

1 .2
RELEASE|1 LOAD/STORE | | LOAD/STORE | [OAD/STORE

3 Weak Consistency

LOAD/STORE LOAD/STORE

¢ 5 RELEASE |1
LOADATORE [Rersese] READS WRITES
) ACQ COMPUTE REL
— —

2 READS WRITES
TOADISTORE Release Consistency (RCpc) (ACQS, T, COMPUTE &y 7 REL,
s — —

LOAD/STORE Release Consistency
Uy cannot perform with respect to
-RELEASE 2 any other processor until u is . . .
! performed Figure 5: Overlap in processing hash table buckets.

Weak Consistency (WCsc)

Figure 4: Possible overlap difference between WCsc and® Implementatlon Issues
RCpc.
The two most important issues from an implementation
point of view are correctness and performance. The con-
uté_istency model determines what a correct implementation
dsof the memory system must provide. The challenge for a
correct implementation is to achieve the full performance

Under sequential consistency, all accesses and comp
tion become serialized. With weak consistency, the rea
can be pipelined. Of course, this assumes the architec ; : . ;
ture allows multiple outstanding reads. All reads need to potential of the chosen consistency model. This section

complete before the computation. Once the computatiorlDresents Ipractl'::zill |mpllenk1)|entat|(?1r_1ttef[:hmqutis,t focusing r?n
completes, the writes occur in a pipelined fashion. How- ISSues relevant 1o scaiable architectures that use caches,

el\r/]er,l bell‘(;re rﬁleasing the I(éck, all Wri:)es need todcomﬁJIer]te.d'slg'?#ete% Irlrg)?/vrinnogr)gu%)nsiigglr?sbIsvgtgﬁiﬁ:g?ﬁgiggﬁrtm%ts&

e lock for the next record can not be acquired until the] ' ; .

previous lock is released d for ordering accesses under the various consistency mod-

. - . els. The problem is split between ordering accesses to

Release consistency provides the most opportunity fori,e same memory block and those to different memory

ove_rlap. Within a_crltlcal section, the ove_rlap is the SaME jncks. General solutions to achieve the proper ordering

as in weak consistency. However, while the release is;rq given along with the particular solutions employed in

being delayed for the writes to complete, the processor ise paASH prototype system [8]. Our discussion focuses on

free to move on to the next record to acquire the lock and;,,aligation-based coherence protocols, although the con-

start the reads. Thus, there is overlap between the Wr|te§elots can also be applied to update-based protocols

of one critical section and the reads of the next section. '

To make the example more concrete, assume the latenc .
of a miss is 40 cycles. Consider read miss, write miss, acb.1 Inter-Block Access Ordering and the
quiring a lock, and releasing a lock as misses. Assume FENCE Mechanism

tser IS 10 cycles and the computation time is 100 cycles.

Assume three read misses and three write misses in eachS @ result of the distribution of the memory and the use
record lookup and update. If all accesses are serialized?f scalable interconnection networks, requests issued by a

each critical section takes 420 cycles. With weak con-Processor to distinct memory modules may execute out of
sistency, the read misses before the computation and th@der. To maintain order among two accesses, we need a
write misses after the computation can be pipelined. TheMechanism to delay the issue pf one access until the previ-
three read misses will complete in 60 cycles. The samePus One has been performedhis requires each processor

is true for the write misses. Therefore, the critical section © kr;eep t(rjack th:'lts 3U}Sta”d'nﬁ_ acEesses. Due to multiple
completes in 300 cycles on an implementation with weak Paths and variable delays within the memory system, ac-
consistency. Under release consistency, the same overldflowledge messages from target memories and caches are
is possible within a critical section. In addition, there is equired to signal the completion of an access.

overlap between ﬁmlcal sec_t!onls. Th_erefore, the proceISSUl 3There is a subtle difference between delaying issue and delaying an
can move on to the next critical section every 230 cycles. yccess from being performed with respect to any other processor. Instead
Figure 5 shows the overlap differences among sequentialof delaying the issue of a write, the processor can delay making the
weak, and release consistency. The segments shown spaaw value visible to other processors. The write is considered performed

the time from the issue to the completion of an access when the new value is made visible to other processors. This allows
‘write accesses to be pipelined. We are studying hardware techniques that

An access may be initiated by the processor several cyclegypioit this distinction for write accesses in invalidate-based machines.
before it is issued to the memory system. However, we do not consider such techniques in this paper.

Page 8

cesses. Therefore, an aggressive implementation requires

Model | Operation Preceded Fence Type| Previous Accesses thgt four counters. However, only two counters are required if
by Fence must be performed | gpecial loads are blocking. Forimmediate fences, the same
COAD | STORE : ; .
SC Xoo) = = = number of counters (as for full or write fence) is required
STORE Tl e P for each outstanding immediate fence. Therefore, we have
BC TOAD ol 5 to multiply this number by the number of immediate fences
STORE write P P that are allowed to be outstanding. Slightly conservative

implementations of release consistency may simply dis-
tinguish special load accesses from other accesses by us-

Figure 6: Fence operations to achieve sequential and proing two counters (only one if special loads are blocking)
cessor consistency. P denotes performed while G denotegnd limit the number of outstanding immediate fences to

globally performed. a small number. _ _
Full fences can be implemented by stalling the processor

until the appropriate counts are zero. A write fence can be
implemented by stalling the write buffer. The immediate
fence, which is only required in release consistency (for an
1ggressive implementation), requires the most hardware.
ach delayed operation requires an entry with its own set
f counters. In addition, accesses and acknowledges need
0 be tagged to distinguish which entry’s counters should
be decremented upon completion. In the DASH proto-
; : type (discussed in Section 6.3), a write fence is substituted
special (e.g., acquire, release) accesses. for the immediate fence (load accesses are blocking), thus

For generality, we assume that load operations are.nqn'providing a conservative implementation of release consis-
blocking. The processor can proceed after the load is iss

sued, and is only delayed if the destination register of thetency.

load is accessed before the value has returned. In contrast, .
a blocking load stalls the processor until it is performed. 6.2 Intra-Block Ordering of Accesses

Fence operations can be classified by the operations theype previous section discussed ordering constraints on ac-
delay and the operations they wait upon. Useful opera-cegses to different memory blocks. When caching is added
tions to delay are: (i) all future read and write accessesy, 5 multiprocessor, ordering among accesses to the same
(full fence; (ii) all future write accessesnfite fencg, and piock becomes an issue also. For example, it is possible
(iii) only the access immediately following the fenden((5 receive a read request to a memory block that has inval-
mediate fence Likewise, useful events to wait for are a jgations pending due to a previous write. There are subtle
combination of previous load accesses, store accesses, apdes involved with servicing the read request while in-
(for the weaker models) special accesses. validations are pending. Cache blocks of larger than one

Figure 6 shows the placement and type of fence operword further complicate ordering, since accesses to differ-
ations required to achieve sequential and processor conent words in the block can cause a similar interaction.
sistency. For example, the first line for SC in the fig- In an invalidation-based coherence protocol, a store op-
ure indicates that the fence prior to a load is a full fence eration to a non-dirty location requires obtaining exclu-
waiting for all previous loads to globally perform and all sive ownership and invalidating other cached copies of the
previous stores to perform. Figure 7 shows the fence operplock. Such invalidations may reach different processors
ations necessary to achieve weak consistency (WCsc) angk different times and acknowledge messages are needed
release consistency (RCpc). The implementations outlinedo indicate that the store is performed. In addition, own-
are the most aggressive implementation for each model irership accesses to the same block must be serialized to
that only the delays that are necessary are enforced. Corensure only one value persists. Unfortunately, the above
servative implementations are possible whereby hardwarewo measures are not enough to guarantee correctness. It
complexity is reduced by allowing some extra delays. s important to distinguish between dirty cache lines with

To implement fences, a processor must keep track ofpending invalidates versus those with no pending invali-
outstanding accesses by keeping appropriate counters. Mates. Otherwise, a processor cache may give up its own-
count is incremented upon the issue of the access, and isrship to a dirty line with invalidates pending to a read
decremented when the acknowledges come back for thadr write request by another processor, and the requesting
access (an acknowledge for a read access is simply thprocessor would not be able to detect that the line returned
return value). For full and write fences, the number of was not performed. The requesting processor could then
counters necessary is a function of the number of differ-improperly pass through a fence operation that requires all
ent kinds of accesses that need to be distinguished. Foprevious loads to be globally performed (if access was a
example, RCpc needs to distinguish four groups of ac-read) or all previous stores to be performed (if access was
cesses: ordinary, nsync load, acquire, and special store ae write). Consequently, read and ownership requests to a

We refer to the mechanism for delaying the issue of ac-
cesses as &nce[3, 5, 13]. We define a general set of
fence operations and demonstrate how these fence ope
ations can be used to implement the consistency model
presented earlier. While fence operations are describe
here as explicit operations, it is possible, and often desir-
able, to implicitly associate fences with load, store, and

Page 9

Model | Operation Preceded Fence Type Previous Accesses that
by Fence must be Performed
LOAD | STORE | SPECIAL LD [SPECIAL ST
WCsc | first LOAD/STORE full P P
after SPECIAL
SPECIAL LD full P P G P
SPECIAL ST full P P G P
Model | Operation Preceded Fence Type Previous Accesses that
by Fence must be Performed
LOAD [STORE | NSYNC LD [ACQUIRE | NSYNC ST | RELEASE
RCpc | first LOAD/STORE full P
after ACQUIRE
NSYNC LD immediate P P
ACQUIRE full P P
NSYNC ST immediate P P P P
RELEASE immediate P P P P P P

Figure 7: Fence operations to achieve weak consistency and release consistency. P denotes performed while G denotes
globally performed.

block with pending invalidates must either be delayed (by bus-based snoopy scheme keeps caches coherent within a
forcing retry or delaying in a buffer) until the invalidations cluster while inter-cluster coherence is maintained using
are complete, or if the request is serviced, the requestin@g distributed directory-based protocol. For each memory
processor must be notified of the outstanding status and acblock, the directory keeps track of remote clusters caching
knowledges should be forwarded to it to indicate the com-it, and point-to-point messages are sent to invalidate re-
pletion of the store. The first alternative provides atomic mote copies of the block.
store operations. The second alternative doesn’t guarantee Each cluster contains a directory controller board. This
atomicity of the store, but informs the requesting processordirectory controller is responsible for maintaining cache
when the store has performed with respect to all procescoherence across the clusters and serving as the interface to
sors. In the next subsection, we will discuss the specificthe interconnection network. Of particular interest to this
implementation technique used in DASH. paper are the protocol and hardware features that are aimed
The issues in update-based cache coherence schemes ateimplementing the release consistency model. Further
slightly different. In an update-based scheme, a store opdetails on the protocol are given in [8].
eration to a location requires updating other cache copies. The processor boards of the 4D/240 are designed to
To maintain coherence, updates to the same block nee¢,ork only with the simple snoopy protocol of the bus.
to be serialized at a central point and updates must reaclthe pase, single-bus system implements a processor con-
each cache in that order. In addition, SC-based models argjstency model. The single bus guarantees that operations
difficult to implement because copies of a location get up- cannot be observed out of order, and no acknowledgements

dated at different times (it is virtually impossible to provide are necessary. Read operations are blocking on the base
atomic stores). Consequently, a load may return a valuemachine.

from a processor’s cache, with no indication of whether the | the distributed DASH environment, the release con-
responsible store has performed with respect to all processistency model allows the processor to retire a write after it
sors. For this reason, PC-based models are an attractivgys received ownership, but before the access is performed

alternative for update-based coherence schemes. with respect to all other processors. Therefore, a mecha-
nism is needed to keep track of outstanding accesses. In
6.3 The DASH Prototype DASH, this function is performed by the remote access

cache (RAC). Corresponding to each outstanding access,
The DASH multiprocessor [8], currently being built at the RAC maintains a count of invalidation acknowledges
Stanford, implements many of the features discussed irpending for that cache block and keeps track of the proces-
the previous sections. The architecture consists of severa$or(s) associated with that access. In addition, the RAC
processing nodes connected through a low-latency scalablgiaintains a counter per processor indicating the number
interconnection network. Physical memory is distributed of RAC entries (i.e., outstanding requests) in use by each
among the nodes. Each processing nodecloster, is processor.
a Silicon Graphics POWER Station 4D/240 [2] consist- To ensure proper intra-block ordering, the RAC detects
ing of four high-performance processors with their indi- accesses to blocks with pending invalidates by snooping
vidual caches and a portion of the shared memory. Aon the cluster bus. In case of a local processor access, the

Page 10

RAC allows the operation to complete, but adds the newwrite their programs, and as long as the programs are PL,
processor to the processor tag field of the RAC. Thus, thehey can be safely executed on hardware implementing the
processor that has a copy of the line now shares responrelease consistency model.
sibility for the block becoming performed. For remote re- To implement the various consistency models, we pro-
quests (i.e., requests from processors on a different clusteose the use of fence operations. Three different kinds
the RAC rejects the request. The RAC does not attempiof fence operations — full fence, write fence, and imme-
to share a non-performed block with a remote processomiate fence — were identified. Careful placement of these
because of the overhead of maintaining the pointer to thismultiple types of fences enabled us to minimize the dura-
remote processor and the need to send an acknowledgeion for which the processor is blocked. We also discussed
ment to this processor when the block has been performedsubtle ordering problems that arise in multiprocessors with
Rejecting the request is not as desirable as queuing the recaches and provided solutions to them. Finally, practical
quests locally, but this would require extra buffering. implementation techniques were presented in the context
To ensure proper inter-block ordering, DASH again re- of the Stanford DASH multiprocessor.
lies on the acknowledges in the protocol and the RAC. The We are currently building the prototype for the DASH
per processor counter indicates the number of outstandingrchitecture, which supports the release consistency model.
requests for each processor. When this count is zero, thewe are using a simulator for the system to quantify the
the processor has no outstanding operations and a fencgerformance differences among the models on real appli-
operation can complete. There are two types of fence opeations and to explore alternative implementations for each
erations in DASH: a full fence and a write fence. The full model. We are also exploring compiler techniques to ex-
fence is implemented by stalling the processor until all ploit the less strict restrictions of release consistency. Fi-
previous memory operations are performed (i.e., the RACnally, we are investigating programming language and pro-
count is zero for that processor). The less restrictive writegramming environment enhancements that allow the com-
fence is implemented by stalling the output of the proces-piler to gather higher level information about the shared
sor’s write-buffer until all previous memory operations are accesses.
performed. This effectively blocks the processor’s access
to the second level cache and cluster bus.
DASH distinguishes lock and unlock synchronization 8 Acknowledgments
operations by physical address. All synchronization vari-
ables must be partitioned to a separate area of the addresgie would like to thank Rohit Chandra for several useful
space. Each unlock (release) operation includes an implicifjiscussions, and Jaswinder Pal Singh and Sarita Adve for
write fence. This blocks the issuing of any further writes their comments on the paper. We also wish to thank the
(including the unlock operation) from that processor un- reviewers for their helpful comments. This research was
til all previous writes have been performed. This implicit supported by DARPA contract NO0014-87-K-0828. Daniel
write fence provides a sufficient implementation for release | enoski is supported by Tandem Computer Incorporated.
consistency. The explicit forms of full and write fence op- Phillip Gibbons is supported in part by NSF grant CCR-

erations are also available. These allow the programmegg-10181 and DARPA contract NO0014-88-K-0166.
or compiler to synthesize other consistency models.

7 Concluding Remarks References

. . . [1] Sarita Adve and Mark Hill. Personal communication.
The issue of what memory consistency model to implement March 1990.
in hardware is of fundamental importance to the design of

scalable multiprocessors. In this paper, we have proposed 2] Forest Baskett, Tom Jermoluk, and Doug Solomon.
new model of consistency, called release consistency. Re-" * The 4D-MP graphics superworkstation: Computing
lease consistency exploits information about the property + graphics = 40 MIPS + 40 MFLOPS and 100,000
of shared-memory accesses to impose fewer restrictionson |ighted polygons per second. Rroceedings of the

event ordering than previously proposed models, and thus 33rd IEEE Computer Society International Confer-

offers the potential for higher performance. To avoid hav- ence — COMPCON 88pages 468-471, February
ing the programmer deal directly with the more complex 1988.

semantics associated with the release consistency model,

we presented a framework for distinguishing accesses in [3] W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3
programs so that the same results are obtained under RC processor-memory element. Proceedings of the
and SC models. In particular, we introduced the notion 1985 International Conference on Parallel Process-
of properly-labeled (PL) programs and proved the equiv- ing, pages 782—789, 1985.

alence between the SC and the RCsc model for PL pro-

grams. This is an important result since programmers can [4] Michel Dubois, Christoph Scheurich, and Fayé
use the well defined semantics of sequential consistency to Briggs. Memory access buffering in multiprocessors.

Page 11

In Proceedings of the 13th Annual International Sym- e The per-processor traceT', is a set of traces, one for
posium on Computer Architectyrepages 434-442, each processor, showing the instructions executed by
June 1986. the processor during the execution. The order among
instructions in the trace is adjusted to depict program

[5] James R. Goodman. Cache consistency and sequen- order for each processor.

tial consistency. Technical Report no. 61, SCI Com-
mittee, March 1989. e The execution orde# O, specifies the order in which

. . conflicting accesses are executed. (Recall from sec-
[6] Anoop Gupta, Milind Tambe, Dirk _Kalp, Charl_es tion 3 that two accesses,andv, conflictif and only if
Forgy, and Allen Newell. Parallel implementation

of OPS5 on the Encore multiprocessor: Results and u andv are to the same location and one is a STORE.)

analysis.International Journal of Parallel Program- EO fully specifies the results of a program, since any
ming 17(2):95-124, 1988. sequential execution of the accesses in an order that

extends the execution order (i.e., topological sort) will
[7] Leslie Lamport. How to make a multiprocessor com- give the same result.

puter that correctly executes multiprocess programs.The delay relation D, is an ordering constraint among in-
IEEE Transactions on Computer§-28(9):241-248, gtryctions within a processor as imposed by some event
September 1979. ordering. For example, the delay relation f&C en-

[8] Dan Lenoski, James Laudon, Kourosh Gharachorloo forces Condition 3.1, as well as local data and control
Anoop Gupta, and John Hennessy. The directory__dependences. These notions of execution order, conflict-
based cache coherence protocol for the DASH mul-ing accesses, and de_lay relat_lon were developed previously
tiprocessor. IrProceedings of the 17th Annual Inter- N [13]. To prove various equivalences, we extend the no-

national Symposium on Computer Architeciuvay tions presented in [13] to handle conditionals, non-atomic
1990. writes, and consistency models other th8d' (we are

preparing a technical report on this). Although writes are

[9] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har- not atomic, we can assume that conflicting accesses are

vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, totally ordered byEO since the implementations we are

V. A. Norton, and J. Weiss. The IBM research par- considering provide cache coherence (i.e., all processors

allel processor prototype (RP3): Introduction and ar- observe two writes to the same location in the same or-

chitecture. InProceedings of the 1985 International der). Also we make the common assumption that accesses

Conference on Parallel Processingages 764—771, are only to words of memory: each read access returns the

1985. value written by some (single) write access.

The execution orde£O on an implementation is con-
sidered legal ifEO U D is acyclic. The graph correspond-
ing to EO U D is called theprecedence graph, of the
execution. Thus a cycle if denotes an impossible ex-
ecution. An instructionz reachesan instructiony in an
[11] Christoph Scheurich.Access Ordering and Coher- execution if there is a (directed) path fromto y in the

ence in Shared Memory MultiprocessoPhD thesis, precedence graph of the execution.

University of Southern California, May 1989. We partition EO into two disjoint setsEO ; and EO,,
where FO; defines the execution order among any two
(conflicting) special accesses afy defines the execution
order among any two (conflicting) accesses where at least
one is an ordinary access. Likewigg,is partitioned into

[13] Dennis Shasha and Marc Snir. Efficient and correctGs andGo. o o
execution of parallel programs that share memory. Given these preliminary definitions, we now proceed

ACM Transactions on Programming Languages and With the proof. We first assume that special accesses are
Systems10(2):282-312, April 1988. not affected by ordinary accesses. This permits us to claim

thatEOs;sc = FEO;.rc follows if Tsc = Tre. We will
. later describe how this restriction can be lifted. In lemma
Appendix A: Proof for SC = RCsc 1, we show that if the same per-processor trace can oc-
cur on bothSC and RC, then the program results are the
In this appendix we present a proof of the equivalencesame. This lemma is then used to prove the main theo-
betweenSC and RCsc for PL programs (with respect to rem, which shows thafC = RC for all PL programs.
SC). For brevity, we will use the term®2C to denote The difficulty in extending the lemma to the main theorem
RC'scand PL to denote PL programs properly-labeled with is in showing that any legal trace aRC' may occur on

[10] C. Scheurich and M. Dubois. Correct memory opera-
tion of cache-based multiprocessors. Rroceedings
of the 14th Annual International Symposium on Com-
puter Architecture pages 234-243, June 1987.

[12] G. E. Schmidt. The Butterfly parallel processor. In
Proceedings of the Second International Conference
on Supercomputingpages 362—-365, 1987.

respect taSC. We begin with a few definitions. SC despite any conditional branches or indirect address-
An executiorof a program on an implementation defines ing. Note thatSC > RC for any program, so it suffices
a pair, (', EO), as follows. to show thatRC > SC.

Page 12

Lemma 1: Consider an executiof = (Tre¢, EOgc) On Theorem 2: SC = RC for PL programs.

RC of a PL program. If there exists a trace 81€ such Proof: Let P be a PL program. Consider any execution
thatTsc = Tre, then there is a corresponding execution E = (Tre, EOgrc) on RC. Let Gre be the precedence
on SC with the same results (i.eEOs¢c = FOge). graph for E. By the definition of a precedence graph, any
Proof: Since the event ordering on special accesses isnstruction that affected another instructionih e.g., af-

SC for both implementations, and special accesses are ndected the existence of a write access or the value returned
affected by ordinary accesseS;.s¢ = G;.re is a legal on a read access, reaches that instructio@ iz

precedence graph for special accessesSéh We will As indicated above, we proceed in a series of stages,
show there exists a legal execution®@, based o1& ;. s¢, one for each conditional. At each stage, we construct an
such thatFO,.s¢c = EO,.gc. execution onSC such that some unproven conditional and

Let v andv be two conflicting accesses frdfisc, such all previously proven conditionals have the same outcome
that« is an ordinary access. # andv are on the same o0nSC andRC.

processor, then the execution ord®, between the two We begin with stage 1. The proof for stage 1 will be
is determined by local dependences and is enforced in théhown using a series of claims. As we shall see, the proof
same way or6C and RC. for each remaining stage is identical to stage 1.

If « andv are on different processors, then the two Since Ggrc is acyclic, there is at least one unproven
accesses need to be ordered through special accesses finditional,us, that is not reached by any other unproven
the program to be a PL program. Accessan be either ~conditional. Letp,, be the processor thatissued Let A,
an ordinary or a special access. Consider the case wherebe the set of instructions that reaeh in Grc. Although
is an ordinary access. Farandv to be ordered, there is 41 is only a subtrace (not even a prefix) of the entire
either (a) a releas® E L, and an acquiretCQ, such that ~ executionE, we will show that the sefi;, constructed in
REL, reachesACQ, in G,.sc or (b) a releaseREL, this way, can be used to prowg.
and an acquiredCQ,, such thatREL, reachesACQ, in Let A;; be the special accesses ©1. We have the
G,.sc. If (a) holds, thenu beforew, uEOw, is the only following characterization ofd ;.
possible execution order ofC. The same is true oRC,
sincev EOw will lead to a cycle in the precedence graph.
This is because clauses (A) and (B) of Condition 3.1 are
upheld. Likewise, a symmetric argument can be used if (b)
holds. The same correspondence betwg&€nand RC can
be shown for the case wheteis a special access. Thus
the execution ordeEO betweenu and v is the same on oochesz and hence will itself be ind;,. There are no

SC and RC. acquires within any branch of an unproven conditional pro-

Since EO;:s¢ = EO;:re, and this execution order de- gram ordered prior to an accessAn, since no access after
termines ank, that is the same for botdC and RC, we gych a conditional can complete prior to the conditional it-
have shown thaBOgsc = EOgre. O self.

We claim that the last program ordered accesdiirfor
each processor (other tham),) is a special access. This
fact can be shown by contradiction. Lef, an ordinary
access, be the last program ordered access for some pro-
gessor in4; (other thanp,,). Sincez; is in Aj, there is
a path,zy, 2o, ..., u1, in Gre. NO access i, is locally
dependent o, since it is the last program ordered access
on its processor. SincE is a PL program, a release below
z1 is needed to order the access aheaeban SC. How-
ever, there is no release belaw in A;. Thus the only
g{/\/ay for z; to affectz; on RC would be in a competing
manner that was prevented &iC. This can happen only
if some acquire above eithet or z, were missing indj;,
which contradicts the claim of the previous paragraph.

Claim 1 follows since program order is preserved on
RC for special accesses]

Claim 1: All special accesses program ordered prior to an
access iMd;; are themselves id;;. There are no special
accesses within any branch of an unproven conditianal,
wherew is program ordered prior to an accessAgy.

Proof: We first show that the claim holds for acquires.
Any acquire program ordered prior to an accessin A;

Therefore,RC > SC for a program if, for every exe-
cution of a program orRC, there is an execution ofiC
such that the traces are the same.

How can the traces for a program &C' and RC dif-
fer? There are two possible sources for any discrepancie
between traces: conditional control flow (affecting which
instructions are executed) and indirect addressing (affect
ing the location accessed by a read or write instruction).
In what follows, we consider only conditionals. Extending
the argument to handle programs with indirect addressin
is trivial, and omitted in this proof.

We will prove thatSC = RC for PL programs as fol-
lows. We must show that there exists an executior$6h
in which the outcome of each conditional is the same. A
conditional for which we have shown this correspondence
will be designatedproven otherwise it will be calledun-
proven Initially, all conditionals in the trace oRC are Given this characterization ad1,, we show that there
unproven We will construct the trace o§C inductively is an execution or§C such that special accesses are the
in a series of stages, where at each stage, we show that &same as im4;. In other words, we show that both imple-
unproven conditional occurs the same way . $@. Once mentations have the san@, for 4;. This will be used
all conditionals are proven, the traces must be equal ando show that the results returned by read accesses are the
we can apply lemma 1. same and hence the outcome of conditianals the same.

Page 13

Claim 2: There is a prefix of an execution &C' such Therefore, the results returned by read accessed;in
that the special accesses are precisely the accesshs in on SC depend only on other accessesdin Thus we can
and the execution order among these special accesses vi#ew the traces as being the same. Hence by lemma 1, all
identical toEO,:rc. read accesses id; up to the last special access pp
Proof: The special accesses i, are self-contained, i.e., return the same results ifis¢ as inE.

there are no acquires ifl;; that are waiting on releases not Finally, the outcome of conditional; depends on the

in 41,. By claim 1, there is an execution &C such that values read by,,. These read accesses can be ordinary or
all special accesses id;, occur. Since special accesses special. SinceP is a PL program, an ordinary read access
are SC on both implementations, the same execution or-affectingu, returns the value of a write access;, that

der among these special accesses is possible on both. T® ordered by local dependence or through an acquire. A
complete the proof, we argue that no other special accesspecial read access affectingis already shown to return
(i.e., notinA1,) can be forced to occur prior to an access the correct value. Thus the outcomewfis the same as

in A1, in every execution or$C that includesd ;. How inE. O

can a special access be forced to occus@r? Either the

special access is program ordered prior to some access | Stagek > 1. Inductively, we can assume that— 1
p o program o prior . ILr}nproven conditionals have been shown to correspond on
Ay or itis a release satisfying an acquire that is not sat-

Yy ”
isfied in A1,. But the former case contradicts claim 1 and SC andRC, such that there is & unproven conditional,

the latter case contradict4$;; being self-contained. Thus Uk, that is not reached by any other unproven qond|t|0_nal.
. . L . At this stage, we add to the current subtrace all instructions
there is an execution o§C and a point in this execu-

Lo . . . that can reach;. Let A; be this new set of instructions.
tion in which the special accesses performed are precisel

. . As before, althoughd; is not a complete trace o8C
the accesses ”415.' a_nd the execution order among these (or even a prefix), we can argue that there is at least one
special accesses is identical ;.. O

execution onSC such that (1) the sam@&; occurs ondy

Claim 3: There is an execution ofC in which the out- in both SC and RC, and thus (2) the outcome af} is
come ofy, is the same as if. the same as . The arguments are identical to those
Proof: Since4; consists of all instructions that affeej in in claims 1-3 above, wherey,...,u;_1 are no longer

E, the outcome of:; in the full execution is determined ~ Unproven conditionals. _ _

by only the accesses iy. Thus it suffices to show that (a) ~ 1herefore, by induction, there is an execution 86

there is an executioEsc on SC in which the instructions such that the outcome of all conditionals is the same as in

in A; occur, (b) all read accesses iy return the same £ Since all unprovens correspond, we know that the full

results inEsc as inE, and (c) the outcome af; in Esc traces are equal. Thus there exists a valid trBgge of P

is determined by only the accessesAn on SC such thaﬂ‘sc = Tre. Hence by Iemma_ 1, there
The accesses im; will occur on SC since none of ~ EXIStS an execution o8C such thatFs¢ = Erg, i.€., the

them are within an unproven conditional. This follows re_sults are the same. This shows tal’ > SC for P.
from the fact that if an access within a conditional can Since€SC > RC, it follows that RC = SC for P. O

reachwu;, then so can its conditional (sindeC' enforces We have assumed for the above proof that special ac-

control dependence). cesses are not affected by ordinary accesses. This is used
Consider the prefix executiot,, constructed in claim in the proof, for example, when we assume in lemma 1 that

2, and letEO;; be the execution order among special ac- EO,.s¢ = EO,.z¢ follows if Ts¢ = Tre. In general,

cesses iM;. SinceFE; is a prefix of a PL programf Oy, however, an ordinary access can affect a special access,

determinesEO,.sc for the accesses id;. e.g., it can be to the same location. Our proof can be
We claim thatEO,, determinesE O, g¢ for the accesses extended to handle this general case in which special ac-

in A1. We must show that the instructions By that are cesses are affected by ordinary accesses, as follows. Con-

not in A, have no effect on the results returned by read sider special read accesses, conditional branches, and ac-

accesses iM;. Consider a write accessy;, in E; that cesses with indirect addressing all to be initially unproven.

reaches a read access, in A; on SC, but does notreach As above, include one new unproven at each stage, un-

itin Gre. Sincery isin Ay, it cannot be reached afizc il all are proven. Since we are proving special read ac-

by an unproven conditional. Thus any local dependencecesses along the way, we ensure the correspondence among

chain fromw; to r4, inclusive, does not include any in- special accesses betwef@ and RC at each stage (i.e.,

struction within an unproven conditional. Hence, if there FO,.sc = EO,.rc). Therefore, theorem 2 holds for gen-

is a local dependence o$iC, then there will be one on eral PL programs.

RC. Moreover, ifw; is ordinary, then it must be followed Adve and Hill [1] have proved a similar equivalence

by a release or$C. Since all accesses complete 8¢ between sequential consistency and their version of weak

prior to a releasew; must be in4; and reach the release ordering.

in Grc. Since EO4; is the execution order for botBC

and RC, wi must reachr; in Ggre. Similarly, if wq is a

special access, it must reaehin Gge. In either case, we

have a contradiction.

Page 14

